
Course Manual BVS1
Operating Systems and Distributed Systems 1

Version: 3 | Last Change: 01.04.2022 09:35 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name Operating Systems and
Distributed Systems 1

Approving CModule BVS1_BaET, BVS1_BaTIN

Responsible Prof. Dr. Cartsten Vogt
Professor Fakultät IME

Valid from winter semester
2021/22

Level Bachelor

Semester in the year winter semester

Duration Semester

Hours in self-study 60

ECTS 5

Professors Prof. Dr. Cartsten Vogt
Professor Fakultät IME

Requirements procedural
programming
architecture of a digital
computer (basic
knowledge)
Internet protocols (basic
knowledge)

Language German

Separate final exam Yes

Literature

siehe http://www.nt.fh-koeln.de/vogt/bs/bvs_lit.pdf

Final exam

Details Students shall prove
that they can 1.) explain
and apply fundamental
terms, conecpts, and
techniques, 2.) apply
programming and more
abstract concepts to
solve application
problems in the field of
concurrent and
distributed
programming and 3.)
assess the correctness
of statements and
program code. Typical
types of assignments
are 1.) multiple choice
questions, fill-in-the-
blank texts, assessment
of statements, 2.) write
program code or
develop a solution in a
more abstract form to
solve given problems of
limited size and 3.)
finding errors in texts
and program code.

file:///C:/Users/Kunz/Daten/xml/F07-Lehre/Daten/web/html_pdf/M_BVS1_BaET2020.html
file:///C:/Users/Kunz/Daten/xml/F07-Lehre/Daten/web/html_pdf/M_BVS1_BaTIN2020.html

Minimum standard At least 50% of the total
number of points.

Exam Type EN Klausur

Lecture / Exercises

Learning goals

Goal type Description

Knowledge fundamentals of operating systems
and distributed systems
position and tasks of an operating
system in a computer
resources to be managed
concurrency in hard- and software
components and properties of
distributed systems
software structures
operating system kernel
hierarchical structures
virtual machines
client-server systems
peer-to-peer systems

Knowledge the UNIX/Linux operating system
history and standards
layered structure
kernel with programming interface
shell with user interface
fundamental user commands
structure of the file system
programming in C

Knowledge concurrency
processes and threads
fundamental properties
processes in UNIX
threads in Java
synchronization
fundamental conditions
mutual exclusion
sequencing
mechanisms
interrupt masking
spinlocks
signals
semaphores
monitors
deadlocks

Special requirements

proficiency in C or Java

Accompanying
material

lecture foils and
animations (electronic),
exercises (electronic),
example program code
(electronic), API
documentation with
comments and
application examples,
links to relevant Web
pages

Separate exam No

Knowledge communication
fundamental terms
storage-based vs. message-based
communication
mailboxes and ports
synchronous vs. asynchronous
communication
local communication
shared memory
message queues
pipes
communication in distributed
systems
protocols
sockets

Skills using the interfaces of an
operating system:
user interface (console)
programming interface (API)

Skills controlling concurrent operations
in an operating system
from the user interface
by API functions

Skills synchronizing concurrent
operations by synchronization
mechanisms

Skills using various communication
mechanisms
local mechanisms
mechanisms in computer networks

Expenditure classroom teaching

Type Attendance (h/Wk.)

Lecture 2

Exercises (whole course) 1

Exercises (shared
course)

1

Tutorial (voluntary) 0

Practical training

Learning goals

Goal type Description

Knowledge commands of the character-based
Linux/UNIX command interface
usage at the console
usage in shell scripts
esp. to control concurrent
processes

Knowledge C functions of the UNIX/Linux
programming interface
to access files and devices
to start and control processes
to synchronize processes
to transfer data between processes
(locally and in a network) -
depending on available time

Skills application of the aspects listed
above to real-world scenarios in
small teams

Expenditure classroom teaching

Type Attendance (h/Wk.)

Practical training 1

Tutorial (voluntary) 0

Special requirements

proficiency in C or Java

Accompanying
material

lecture foils and
animations (electronic),
example program code
(electronic), API
documentation with
comments and
application examples

Separate exam Yes

Separate exam

Exam Type EN praxisnahes
Szenario bearbeiten
(z.B. im Praktikum)

Details Students work in small
teams. Each team
completes multiple
"rounds" with assigned
appointments in the
lab. In each round,
programming
assigments are solved.
For the preparation of a
laboratory appointment
a "preparation sheet"
has to be solved. The
acquired knowledge will
be tested at the
beginning of the
appointment (short
written entrance test,
interview with the
supervisor). In case of
failure, a follow-up
appointment must be
taken; in case of
multiple failures, the
student will be excluded
from the lab. In case of
success, a "laboratory
work sheet" with further
tasks will be worked on
under supervision (and,
if necessary, with
assistance).

Minimum standard Successful participation
in all laboratory
appointments, i.e. in
particular independent
solution (or with some
assistance if necessary)
of the programming
assignments.

© 2022 Technische Hochschule Köln

