

Lehrveranstaltungshandbuch AM

Angewandte Mathematik

Version: 2 | Letzte Änderung: 12.02.2021 13:24 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- Allgemeine Informationen

Langname	Angewandte Mathematik
Anerkennende LModule	AM BaET
Verantwortlich	Prof. Dr. Beate Rhein Professor Fakultät IME
Gültig ab	Wintersemester 2021/22
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	96
ECTS	5
Dozenten	Prof. Dr. Beate Rhein Professor Fakultät IME
Voraussetzungen	Grundlegende mathematische Kenntnisse, insbesondere Funktionen und Differentialrechnung anwenden Methoden der linearen Algebra anwenden können Grundbegriffe der Programmierung anwenden

Literatur

Knorrenschild: Numerische Mathematik (Fachbuchverlag)

Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1+2 (Vieweg)

Abschlussprüfung

Details Die theoretischen

Grundlagen und die zugehörigen

Berechnungsmethoden

werden in einer schriftlichen Klausur abgeprüft. Die

Programmierkenntnisse, die nötig sind, um einen

Algorithmus zu implementieren, werden in einem

Programmiertest

geprüft.

Unterrichtssprache	deutsch		Mindeststandard	Beide Prüfungsteile
separate	Ja			müssen mindestens mit 4.0 bestanden werden. Die Klausur und
Abschlussprüfung				Programmiertest gehen
		J		anteilig in die Modulnote ein. Die
				Gewichtung beträgt zur Zeit 70% für die Klausur
				und 30% für den
				Programmiertest.

Prüfungstyp

andere summarische

Prüfungsform

- <u>Vorlesung / Übungen</u>

Lernziele **Zieltyp Beschreibung** Kenntnisse Rechnerarithmetik Fehlerrechnung, Kondition einer Matrix Gaußalgorithmus mit Spaltenpivotisierung Interpolation Nullstellenprobleme (Bisektion, Newton, Varianten von Newton, Fixpunktiteration) Iterationsverfahren für lineare GS Regressionsanalyse Wahrscheinlichkeitsrechnung Fertigkeiten Weitergabe von Meßfehlern abschätzen können numerische Algorithmen anwenden und programmieren Trendfunktionen aufstellen können mit Wahrscheinlichkeiten umgehen können

Besondere	Voraussetzungen
-----------	-----------------

keine

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Übungen (ganzer Kurs)	1
Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

© 2022 Technische Hochschule Köln