

TH Köln

Lehrveranstaltungshandbuch EEV

Elektrische Energieverteilung

Version: 1 | Letzte Änderung: 12.09.2019 18:26 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Elektrische Energieverteilung
Anerkennende LModule	EEV BaET
Verantwortlich	Prof. Dr. Eberhard Waffenschmidt Professor Fakultät IME
Gültig ab	Wintersemester 2022/23
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	60
ECTS	5
Dozenten	Prof. Dr. Eberhard Waffenschmidt Professor Fakultät IME
Voraussetzungen	- Analysemethoden von elektrische Netzwerken, u.a Knotenpotentialverfahre - Überlagerungsprinzip, - Ersatzspannungsquelle, - Komplexe Wechselstromrechnung - Komplexe Leistung

Drehstromsysteme

Literatur

D. Nelles / CH. Tuttas, "Elektrische Energietechnik", B.G. Teubner Verlag, Stuttgart, ISBN 3-519-06427-8

Abschlussprüfung

Details	Die Prüfung besteht aus
	drei Teilen A, B und C:
	Teil A fragt
	grundlegende
	Kompetenzen (Wissen,
	einfache Anwendung)
	ab.
	Teil B fragt
	angeforderte
	Kompetenzen ab
	(Anwenden, Beurteilen)
	Teil C fragt über die
	Anforderung
	hinausgehende
	Kompetenzen ab
	(Kreativität,
	Kombinationsgabe mit
	erworbenem Wissen)
Mindeststandard	ausreichend (4.0)
Prüfungstyp	Klausur

Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

- <u>Vorlesung / Übungen</u>

Lernziele **Zieltyp Beschreibung** Kenntnisse - Netzstrukturen und Komponenten erkennen, fachgerecht benennen und Vorund Nachteile beurteilen. - Leitungseigenschaften benennen und bei Berechnungen berücksichtigen. - Spannungen und Ströme auf Leitungen berechnen. - Symmetrische und unsymmetrische Drehstromsysteme berechnen können. - Netzanschluss von Erzeugern (z.B. PV-Anlagen) und Verbrauchern beurteilen. - Kurzschluss-Ströme berechnen und Schutzkomponenten dimensionieren. - Funktionsweise der Netzregelung kennen und erläutern sowie Reaktionen auf Lastsprünge berechnen.

Besondere Voraussetzungen

keine

Begleitmaterial	Vorlesungs-Präsentationen (pdf-Format)Übungsskript
Separate Prüfung	Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Übungen (ganzer Kurs)	2
Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

Praktikum

Zieltyp Beschreibung Kenntnisse - Messung von Welleneigenschaften von Leitungen - Simulation von Lastflüssen - Schalten und Messen von Leistungsflüssen

ufwand Präsenzle	hre
Тур	Präsenzzeit (h/Wo.)
Praktikum	1
Tutorium (freiwillig)	0

Besondere Voraussetzungen

keine

Begleitmaterial	- Praktikumsbeschreibung und Berichtvorlage
Separate Prüfung	Ja

Separate Prüfung	
Prüfungstyp	praxisnahes Szenario bearbeiten (z.B. im Praktikum)
Details	- Abschlussbesprechung nach jedem Versuchstermin - Abfassen von Versuchsberichten
Mindeststandard	Erfolgreiche Anwesenheit an den Praktikumsversuchen

© 2022 Technische Hochschule Köln