Lehrveranstaltungshandbuch ES

Eingebettete Systeme

Version: 2 | Letzte Änderung: 29.07.2019 09:12 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Eingebettete Systeme		
Anerkennende LModule	ES BaET, ES BaTIN		
Verantwortlich	Prof. Dr. Tobias Krawutschke Professor Fakultät IME		
Gültig ab	Wintersemester 2022/23		
Niveau	Bachelor		
Semester im Jahr	Wintersemester		
Dauer	Semester		
Stunden im Selbststudium	78		
ECTS	5		
Dozenten	NF Hartung		
Voraussetzungen	Grundlagen der technischen Informatik Boolesche Logik, Automaten und Schaltwerke Aufbau und Funktionsweise von Mikrocontrollern Mikrocontroller- Programmierung (vorzugsweise in C) Programmiererfahrung mit		
	Entwicklungsumgebunger		

wie Eclipse

Literatur

W.Wolff: Computers as Compenents: Principles of Embedded System Design

Wieringa: Design Methods for reactive Systems

Unterrichtssprache	deutsch
separate Abschlussprüfung	Nein

Vorlesung

ernziele.	
Zieltyp	Beschreibung
Kenntnisse	Entwurfs- und Beschreibungsverfahren Funktionale Untergliederung Verhaltensbeschreibung Objektorientierte Beschreibung Beschreibung paralleler Abläufe mit Petri-Netzen Konstruktion eingebetteter Systeme Hardwareaspekte Mikrocontroller SOPC-Lösungen Anbindung von IO-Bausteinen Serielle Anbindung Punkt zu Punkt-Verbindung Serielle Busse Parallele Anbindung DMA Leistungsverbrauch-Aspekte Softwareaspekte Auswahl der Programmiersprache Assembler
	C C++ andere SW-Architektur SingleTask Zustandsautomat Statisches Funktionsscheduling Multitasking RTOS-basiert Embedded Linux Erfüllung von Zeitanforderungen an Tasks Verteilte eingebetteter Systeme Grundwissen verteilte Systeme Schichtenaufbau des Kommunikationssystems Grundwissen Feldbusse Grundwissen Internet of Things (IoT) Programmierung verteilter eingebetteter Systeme

Besondere Voraussetzungen

Keine

Begleitmaterial	Vortragsfolien zur Vorlesung Modelle und Programmbeispiele
Separate Prüfung	Ja

Separate Prüfung	
Prüfungstyp	Übungsaufgabe mit fachlich / methodisch eingeschränktem Fokus unter Klausurbedingungen lösen
Details	Abfrage von Wissen und Verständnis zu den in der Vorlesung vorgestellten Inhalten
Mindeststandard	Mindestens 50% der Fragen richtig beantwortet

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)		
Vorlesung	2		

Tutorium (freiwillig) 2

– <u>Projekt</u>

Lernziele		
Zieltyp	Beschreibung	
Fertigkeiten	Im Team: Entwicklung eines eingebetteten Systems mit einer abgesprochenen Aufgabe, z.B. einer Modellsteuerung eines mechanischen Modells, eines Umweltsensors usw. Projektziel ist ein Prototyp, der die Funktionalität nachweist	
	Schritte: 1) Beschreibung/Spezifikation Aufgabenbeschreibung aus Kundensicht im Dialog mit dem Auftraggeber (= Dozent) Entwicklung eines Konzepts zur Lösung 2) Hardwareauswahl Recherche geeigneter Bausteine in technischen Handbüchern 3) Modellierung der Lösung 4) Implementierung unter Benutzung von modernen Entwicklungsumgebungen und Programmierstandards, insb. RTOS	
Fertigkeiten	komplexe Aufgaben im Team bewältigen einfache Projekte planen und steuern Absprachen und Termine einhalten	
Fertigkeiten	Präsentation einer Entwicklung Aufgabenstellung Projektzwischenstand Ergebnis Dokumentation in einem Projektbericht Projektbeschreibung Umsetzung Benutzung Erfahrungen	

Besondere Voraussetzungen

keine

Begleitmaterial	Implementationshilfen HW/SW für die Systementwicklung (µC oder FPGA-System) Prototyping-Materialien zur Verbindung mit dem Prozess Mechanische Prototyping-Materialien
Separate Prüfung	Ja

Separate Prüfung	
Prüfungstyp	Projektaufgabe im Team bearbeiten (z.B. im Praktikum)
Details	Bewertung der Präsentationen, Diskussionsbeiträge, Ergebnisse und des Berichts
Mindeststandard	Zeitgerechte Einlieferung und Präsentation aller durch den Dozenten vorgegebenen Meilensteine, Lösung von Teilaufgaben zum Projekt

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Projekt	1
Tutorium (freiwillig)	2

– <u>Übungen</u>

Lernziele		
Zieltyp	Beschreibung	
Fertigkeiten	Modellierung eines Eingebetteten Systems gemäß anerkannter Methoden für Reaktive Systeme	
Fertigkeiten	Erstellung der Software eines eingebetteten Systems in C auf Basis einer HAL (Hardware Abstraction Layer) oder unter Benutzung eines RTOS	

Begleitmaterial	Übungsaufgaben
	Kleine
	Programmieraufgaben
	Tutorials für
	Werkzeugbenutzung

Besondere Voraussetzungen

keine

Aufwand Präsenzlehre	
Тур	Präsenzzeit (h/Wo.)
Übungen (ganzer Kurs)	1
Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

Separate Prüfung	
Prüfungstyp	Übungsaufgabe mit fachlich / methodisch eingeschränktem Fokus unter Klausurbedingungen lösen
Details	Aufgaben zu den Teilen Modellierung und Programmierung, in denen die in der Übung vermittelten Fertigkeiten nachzuweisen sind
Mindeststandard	Erreichen von 50 % der Punkte in den Aufgaben

© 2022 Technische Hochschule Köln