

TH Köln

Lehrveranstaltungshandbuch FEM

Finite Elemente Methode in der Elektrotechnik

Version: 2 | Letzte Änderung: 29.04.2022 18:23 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Finite Elemente Methode in der Elektrotechnik
Anerkennende LModule	<u>SIM MaET</u>
Verantwortlich	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Gültig ab	Sommersemester 2021
Niveau	Master
Semester im Jahr	Sommersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Voraussetzungen	- Elektrostatik: Feldstärke, Flussdichte, Dielektrika - Elektromagnetismus: Feldstärke, Flussdichte, Fluss, magnetische Kreise, induzierte Spannung
Unterrichtssprache	deutsch
separate Abschlussprüfung	Nein

Literatur

Thomas Westermann, Modellbildung und Simulation

Thomas Westermann: Mathematik für Ingenieure

- <u>Vorlesung / Übungen</u>

Lernziele **Zieltyp** Beschreibung Fertigkeiten Diskretisierung physikalischer Probleme am Beispiel einer elektrostatischen Anordnung - Eindimensionales Modell - Zweidimensionale Modell - Ersatz der partiellen Ableitungen durch finite Differenzen - Randbedingungen - Aufstellen des linearen Gleichungssystems - Verschiedene Methoden zur Lösung des Gleichungssystem - Ergebnisdarstellung mit Interpolation - Verwendung von randangepassten Gittern - Lösen eines zweidimensionalen elektrostatischen Problems mit einer FEM-Software - Ausnutzen von Symmetrien bei der Simulation - Lösen eines zweidimensionalen magnetischen Problems mit einer FEM-Software - Erweiterung des magnetischen Problems um nichtlineare Materialeigenschaften - Erweiterung der Simulation durch programmgesteuerte Variation von Parametern und automatischer Ausgabe von Diagrammen mit Python Durchführen und kritisches Fertigkeiten Bewerten von FEM-Simulationen zu verschiedenen physikalischen

Aufwand Präsenzlehre

Effekten

Тур	Präsenzzeit (h/Wo.)		
Vorlesung	2		
Übungen (ganzer Kurs)	2		
Übungen (geteilter Kurs)	0		
Tutorium (freiwillig)	0		

Besondere Voraussetzungen

keine

Begleitmaterial	elektronischeVortragsfolien zurVorlesungelektronischeÜbungsaufgabensammlung
Separate Prüfung	Ja

Separate Prüfung

Prüfungstyp andere

studienbegleitende Prüfungsform

Details

Die Studierenden lösen eigenständig Aufgabenstellungen, bei denen gegebene pyhsikalische Anordnungen mit eienm FEM-Programm berechnet werden sollen. Im Anschluss wird dazu ein Bericht in Form eines Konferenzpapers geschrieben. Die studienbegleitenden Prüfungen bestehen aus drei Aufgaben mit unterschiedlichem Umfang und entsprechend unterschiedlichem Einfluss auf die Note: 1. Simulation von zwei elektrostatischen Anordnungen. Ausnutzung der Modellsymmetrien. (20 2. Simulation und Optimierung einer magnetischen Anordnung mit Materialien mit linearer und nichtlinearer Magnetisierungskennlinie. (20 %) 3. Automatisierung einer Simulation einer magnetischen Anordnung mit Python und Berechnung von Kennlinien durch Parametervariation und Ausgabe in ein

Mindeststandard

Funktionsfähige
Simulation mit
physikalisch sinnvollen
Ergebnissen.
Verständliche
Darstellung der
Ergebnisse in dem
jeweiligen Bericht.
Erreichen von 50 %
der insgesamt zu
vergebenden Punkte.

Diagramm. (60 %)