TH Köln

Lehrveranstaltungshandbuch OSA

Optische Spektroskopie und Anwendungen

Version: 1 | Letzte Änderung: 19.10.2019 14:38 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Optische Spektroskopie und Anwendungen
Anerkennende LModule	OSA MaET
Verantwortlich	Prof. Dr. Michael Gartz Professor Fakultät IME
Gültig ab	Sommersemester 2021
Niveau	Master
Semester im Jahr	Sommersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Michael Gartz Professor Fakultät IME
Voraussetzungen	Geometrische Optik Radiometrie, Fotometrie, Strahlungsphysik Optische Messtechnik Wellenoptik Mathematik 1 / 2 Physik 1 / 2
Unterrichtssprache	deutsch

Literatur
Demtröder, Laser-Spektroskopie, Springer
Demtröder, Experimentalphysik 2, Springer
Schmidt Werner, Optische Spektroskopie, Wiley- VCH
Pedrotti, Pedrotti, Bausch, Schmidt, Optik für Ingenieure, Grundlagen, Springer
Schröder, Treiber, Technische Optik, Vogel Verlag
Hecht, Optik, Oldenbourg
Bergmann, Schaefer, Bd.3, Optik, de Gruyter
Max Born und Emil Wolf, Principles of Optics, Cambridge University Press

Abschlussprüfung

Details	Mündliche Prüfung, in der die Taxonomiestufen Verstehen, Anwenden, Analysieren, Synthetisieren und Bewerten geprüft werden, indem die Studierenden ihre während des Semesters durchgeführten Projekte vorstellen, erklären und dabei zeigen, dass sie die in der Vorlesung erarbeitet Fachbegriffe, Theorien und Verfahren verstehen und anwenden können, die Anforderungen ihrer Projektaufgabe analysiert haben und eine Lösung ihrer Projektaufgabe synthetisiert haben und im Prüfungsgespräch bewerten können.
Mindeststandard	50 % der Fragen und Aufgaben aus allen Prüfungsteilen (Projekt, Vorlesung) richtig beantwortet
Prüfungstyp	mündliche Prüfung, strukturierte Befragung

Vorlesung

Lernziele	
Zieltyp	Beschreibung
Kenntnisse	Erste Anwendung
	Schichtdickenmessung mittels
	optischer Sepktroskopie
	Messprinzip
	Aufbau
	Empfindlichkeit
Kenntnisse	Grundlagen der Spektroskopie
	Dispersion
	Winkeldispersion
	lineare Dispersion
	Prisma
	Strahlengang im Prisma
	Dispersion des Prismas
	Gitter
	Beugung am Gitter
	Dispersion am Gitter
	nutzbarer Spektralbereich des
	Gitters
	Gittertypen
	Transmissionsgitter
	Reflektionsgitter
	Echelettegitter
	konkave Gitter
	Herstellungsverfahren
	geritzte Gitter
	holographische Gitter
	Beugungseffizienz von Gittern
	Messung
	Blaze-Technik
	Vergleich: Gitter und Prisma

Besondere Voraussetzungen

keine

Begleitmaterial	Vortragsfolien zur Vorlesung als pdf-Files
Separate Prüfung	Nein

Kenntnisse Aufbau von Spektrometern Aufbau des Monochromators Aufbau des Prismenspektrometers Auflösungsvermögen des Prismenspektromters Strahlengang Aufbau des Gitterspektrometers Auflösungsvermögen des Gitterspektromters Strahlengang Störeffekte im Spektrometer Geisterbilder Streulicht Second Order Effekte Strahlungsquellen Eigenschaften von Strahlungsquellen Thermische Quellen Entladungslampen Leuchtdioden Laser Detektoren / Empfänger Eigenschaften von Empfänger Photodiode CCD / CMOS Zeile / Matrix thermische Detektoren Filter Absorptionsfilter Interferenzfilter Kalibrierung von Spektrometern Wellenlängenkalibrierung Intensitätskalibrierung Kenntnisse Kenngrößen von Spektrometern Spektrales Auflösungsvermögen Beugungseffizienz freier Spektralbereich Kenntnisse Kommerzielle Spektrometer **UV-Spektrometer** VIS-Spektrometer IR- / NIR- Spektrometer Multichannel Spektrometer Kenntnisse Fourier Spektroskopie Prinzip der Fourier Spektroskopie Fouriertransformation Diskrete Fouriertransformation Fourier Spektrometer Kenntnisse Anwendungen Raman Spektroskopie Grundlagen Anwendungen der Raman Spektroskopie Farbmessung Transmissionsmessung Remissionsmessung Emissionsmessung Schichtdickenmessung Spektrale Element Analyse (weitere Themen nach Auswahl)

Fertigkeiten	berechnen der spektralen Auflösung der Winkel- und Linear-Dispersion des freien Spektralbereichs des Arbeitsbereiches beim Chromatischen Längsaberrationssensors der Auflösung beim Lichtschnittsensor
Fertigkeiten	auswählen eines Spektrometers für eine spezielle Messaufgabe einer Lichtquelle für die Absorptions- und Transmissionsmessung
Fertigkeiten	bestimmen der Transmissionskurve diverser optischer Bauteile des spektralen Reflektionsgrades der Dicke nicht opaker Schichten
Fertigkeiten	beurteilen der Empfindlichkeit eines Spektrometers der Verwendbarkeit eines Spektrometers
Fertigkeiten	analysieren von Messaufgaben aus dem Bereich der optischen Spektroskopie

A f	- d	Dräce	nzlehre
Autwa	HU	riase	nzienie

Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Tutorium (freiwillig)	0

– <u>Projekt</u>

ernziele	
Zieltyp	Beschreibung
Fertigkeiten	Spektrometer Aufbauten justieren
Fertigkeiten	optische Spektren aufnehmen, auswerten und dokumentieren
Fertigkeiten	Ergebnisse auf Plausibilität überprüfen
Fertigkeiten	Zusammenhänge erkennen und verstehen
Fertigkeiten	Auswählen des Spektrometertyps für eine spezielle Messaufgabe
Fertigkeiten	Umrechung der verschiedenen spektralen Darstellungsarten
Fertigkeiten	analysieren einer spektroskopischen optischen Messaufgabe Eigenständig erkannte Messaufgabe analysieren Vorgegebene Messaufgabe analysieren
Fertigkeiten	konzipieren eines Lösungansatzes für die analysierte Messaufgabe Berücksichtigung der Laborresourcen Berücksichtigung des verfügbaren Zeitkontingentes
Fertigkeiten	Präsentation einer Projektskizze Aufgabenstellung beschreiben Lösungsansatz darlegen Ergebnisse übersichtlich aufbereitet darstellen Ergebnisse technisch wissenschaftliche diskutieren
Fertigkeiten	Milestone-Präsentation zur Überprüfung des Projektfortschrittes Aufgabenstellung beschreiben Lösungsansatz darlegen Ergebnisse übersichtlich aufbereitet darstellen Ergebnisse technisch wissenschaftliche diskutieren

Besondere Voraussetzungen

keine

Begleitmaterial	mündliche Diskussionen mit Projektbetreuer mit individuellen gegebenen Literaturangaben
Separate Prüfung	Nein

Fertigkeiten	Abschluss-Präsentation mit Darlegung des realisierten Lösungsansatzes Aufgabenstellung beschreiben Lösungsansatz darlegen Ergebnisse übersichtlich aufbereitet darstellen Ergebnisse technisch wissenschaftliche diskutieren
Fertigkeiten	grundlegende Spektrometer Aufbauten selber realisieren aufbauen justieren Funktionsprüfung durchführen
Fertigkeiten	naturwissenschaftlich / technische Gesetzmäßigkeiten mit einem optischen Aufbau erforschen Messreihen planen Fehlereinflüsse abschätzen Tauglichkeit des Aufbaus überprüfen
Fertigkeiten	selbst gewonnenen Messreihen auswerten Messwerte graphisch darstellen Implizite Größen aus Messwerten math. korrekt berechnen logische Fehler entdecken und bennen Messwerte mittels vorgegebener Formeln simulieren
Fertigkeiten	Komplexe technische Aufgaben im Team bearbeiten Organisieren in Teilaufgaben Messergebnisse diskutieren gegenseitig sinnvoll ergänzen

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Projekt	2
Tutorium (freiwillig)	0