TH Köln

Lehrveranstaltungshandbuch PH1

Physik 1

Version: 1 | Letzte Änderung: 15.09.2019 21:05 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Physik 1
Anerkennende LModule	PH1 BaET
Verantwortlich	Prof. Dr. Christof Humpert Professor Fakultät IME
Gültig ab	Sommersemester 2021
Niveau	Bachelor
Semester im Jahr	Sommersemester
Dauer	Semester
Stunden im Selbststudium	60
ECTS	5
Dozenten	Prof. Dr. Christof Humpert Professor Fakultät IME
Voraussetzungen	Funktionen (sin, cos, exp, ln) Gleichungen und Gleichungssysteme (lineare, quadratische) Analysis (Differential- und Integralrechnung) Lineare Algebra (2-/3- dim. Vektorrechnung)
Unterrichtssprache	deutsch
separate	Ja

Literatur

Tippler, Mosca; Physik (Springer Spektrum)

Giancoli; Physik Lehr- und Übungsbuch (Pearson)

Halliday, Resnick, Walker; Halliday Physik (Wiley-VCH)

Abschlussprüfung

	Dutter on a sect following date
	Prüfung, mit folgenden
	Elementen:
	- Multiple-Choice und
	Zuordnungsfragen zur
	Abfrage grundsätzliche
	Begriffe,
	Zusammenhänge und
	Analogien
	- Freitext-Antworten zu
	Abfrage
	weitergehender
	Kenntnisse und dem
	Grundverständnis
	physikalischer
	Zusammenhänge
	- Erstellung von Skizzen
	zur Prüfung des
	weitergehenden
	Verständnisses
	- Anwendungsnahe
	Text-Aufgaben, zu
	deren Lösung das
	physikalische Probleme
	analysiert und reduziert
	ein geeignetes Modell
	ausgewählt und mathematisch
	angewandt werden
	muss.
Mindeststandard	50 % der Fragen und
	Aufgaben richtig
	bearbeitet
Prüfungstyp	Klausur

- Vorlesung / Übungen

Lernziele **Zieltyp** Beschreibung Kenntnisse Mechanik starrer Körper - Physikalische Größen und Einheiten - Kinematik (zeitliche Beschreibung geradliniger und Dreh-Bewegungen) - Analogie geradlinige und Dreh-Bewegung - Eindimensionale Bewegung - Mehrdimensionale Bewegung und schiefer Wurf - Dynamik (Kräfte, Scheinkräfte, Reibungskräfte, Newton-Axiome) - Arbeit, Energie, Energieerhaltung - Impuls, Impulserhaltung und Stoßprozesse - Drehmoment und Trägheitsmoment - Drehimpuls und Drehimpulserhaltung Mechanik deformierbarer Körper - Elastische und plastische Verformung - Spannung, Druck Analogien erkennen und Fertigkeiten anwenden, z.B. ineare Bewegung und Dreh-Bewegung Kräftebilanzen ableiten und Bewegungsgleichungen aufstellen Energiebilanzen ableiten und aus der Energieerhaltung Bewegungszuständen bestimmen Impulsbilanzen ableiten und aus der Impulserhaltung Bewegungszuständen bestimmen Einfache physikalische Problemstellungen analysieren, physikalische Modelle anwenden

Besondere Voraussetzungen

keine

B 12 4 11	V (C P
Begleitmaterial	Vortragsfolien zur
	Vorlesung
	Übungsaufgabensammlung
	mit Lösungen
	Fragenkatalog für
	Vorbereitung auf die
	Klausur
	Links auf
	Internetressourcen mit
	grundlegenden
	Informationen
Separate Prüfung	Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	3
Übungen (ganzer Kurs)	2

und berechnen

Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

© 2022 Technische Hochschule Köln