

TH Köln

Lehrveranstaltungshandbuch QM

Quantenmechanik

Version: 1 | Letzte Änderung: 29.09.2019 18:39 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Quantenmechanik
Anerkennende LModule	QM_MaET
Verantwortlich	Prof. Dr. Uwe Oberheide Professor Fakultät IME
Gültig ab	Wintersemester 2020/21
Niveau	Master
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Uwe Oberheide Professor Fakultät IME

Literatur

Harris – Moderne Physik, Pearson Verlag

Feynman - Vorlesungen über Physik Band III:Quantenmechanik, Oldenbourg Verlag

Abschlussprüfung

Abschlussprüfung	
Details	Prüfung der Taxonomiestufen Verstehen und Anwenden durch Beschreibung der elementaren quantenmechanischen Prozesse und ihrer Unterscheidung zur klassisch-physikalischen Darstellung Prüfung der Taxonomiestufe Analysieren anhand von realen Anwendungen und die Rückführung auf beteiligte quantenmechanische Vorgänge
Mindeststandard	50 % der Fragen richtig beantwortet
Prüfungstyp	mündliche Prüfung, strukturierte Befragung

Unterrichtssprache	elektrische Felder, Bauelemente) deutsch
	Mathematik (Integralrechnung, Differentialrechnung, Vektorgeometrie) Grundkenntnisse Physik (Schwingungen und Wellen, Doppelspalt, Interferenz, Thermodynamik, potentielle / kinetische Energie) Grundkenntnisse Elektrotechnik (magnetische und

Vorlesung

Lernziele **Zieltyp** Beschreibung Kenntnisse Das Versagen der klassischen Physik (Schwarzer Strahler, Lichtelektrischer Effekt, Compton-Effekt, Stern-Gerlach-Experiment, Bohrsches Atommodell, Materiewellen) Quantenverhalten (Experimente mit Kugeln, Wellen und Elektronen; Grundprinzipien der Quantenmechanik; Unbestimmtheitsprinzip; Gesetze zu Kombination von Amplituden; Identische Teilchen) Schrödinger Gleichung (Entwicklung der Wellengleichung; stationär, zeitabhängig) einfache Potentialprobleme (unendlich tiefer Potentialtopf, endlich tiefer Potentialtopf, Potentialstufe, Potentialbarriere, harmonischer Oszillator, Wasserstoffatom) Grundprinzipien von Quantencomputern und Quantenkryptographie vorgebene physikalische Probleme Fertigkeiten durch Aufstellung der Schrödingergleichung mathematisch beschreiben und Methoden zur Lösung der Differentialgleichungen anwenden (Separationsansätze, Grenzwertbetrachtungen) physikalischen Lösungen bewerten und durch Analogien auswählen Quanteneffekte analysieren und

Besondere Voraussetzungen

keine

Vortragsfolien zur Vorlesung Links auf Internetressourcen mit grundlegenden Informationen
Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	3
Tutorium (freiwillig)	0

übertragen

auf technische Anwendungen

- <u>Seminar</u>

Lernziele	
Zieltyp	Beschreibung
Kenntnisse	Diskurs über die quantenmechanischen Prozesse (Unschärfeprinzip, Welle-Teilchen- Dualismus, Wellenfunktionen/- pakete) und ihre Anwendungen in realen Systemen im Rahmen der Lehrveranstaltung

Besondere Voraussetzungen

keine

Begleitmaterial	undefined
Separate Prüfung	Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Seminar	1
Tutorium (freiwillig)	0

© 2022 Technische Hochschule Köln