TH Köln

Lehrveranstaltungshandbuch STE

Steuerungstechnik

Version: 3 | Letzte Änderung: 30.09.2019 14:20 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Steuerungstechnik
Anerkennende LModule	STE BaET
Verantwortlich	Prof. Dr. Stefan Kreiser Professor Fakultät IME
Gültig ab	Wintersemester 2022/23
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Stefan Kreiser Professor Fakultät IME Kellersohn
Voraussetzungen	Grundlegende prozedurale Programmierkenntnisse Shannon'sches Abtasttheorem Boole'sche Algebra Datendiskretisierung Datenkodierung Endliche Automaten (FSM)
Unterrichtssprache	deutsch

Lauber, Göhner: Prozessautomatisierung Bd. 1 u. 2 (Springer) John, Tiegelkamp: SPS-Progr. mit IEC 61131-3 (Springer) Wellenreuther, Zastrow: Automatisieren m. SPS Theorie u. Praxis (Vieweg) B. Baumgarten: Petri-Netze (Spektrum Akad.) Priese, Wimmel: Theoretische Informatik - Petri Netze (Springer)

Abschlussprüfung

separate
Abschlussprüfung

Ja

Details

Mündliche Prüfung nach schriftlicher Vorbereitung. Anhand einer realitätsnahen automatisierungstechnischer Aufgabenstellung angemessener Komplexität entwickeln die Studierenden ein geeignetes Modell für ein nebenläufiges ereignisdiskretes Steuerungssystem. Sie begründen die essenziellen Strukturen ihres Modells unter Bezugnahme auf typische automatisier ung stechnischeSystem-, Entwicklungsund Wartungsanforderungen sowie aufgabenspezifische Vorgaben und weisen nach, dass das das Modell das geforderte Verhalten und die geforderte Qualität zeigt, auf einem Steuerungsgerät implementierbar und dann als Steuerungssystem für die gegebene

automatisierungstechnische

Aufgabenstellung einsetzbar ist.

Mindeststandard

- Studierende extrahieren die wesentlichen relevanten Informationen und Lösungseinschränkungen aus der Aufgabenspezifikation und entwerfen ein begründetes, steuerungstechnisch interpretiertes Petri-Netz-Modell der Steuerung unter Berücksichtigung essenzieller automatisierungstechnischer Qualitätskriterien. -Studierende sind fähig, wesentliche Modellausschnitte im Gedankenexperiment zu simulieren und damit nachzuweisen, dass das betrachtete Modell spezielle, geforderte Verhaltensanteile realisiert. - Studierende sind fähig, ein angemessenes Implementierungskonzeptfür ihr spezifisches Modell auf einem industriellen Steuerungsgerät in seinen wesentlichen Strukturen und Eigenschaften zu beschreiben und zu begründen. Dabei zeigen sie, wie die einzelnen Modellelemente und Strukturen auf das Implementierungskonzept

Prüfungstyp

mündliche Prüfung, strukturierte Befragung

abgebildet werden.

- <u>Vorlesung / Übungen</u>

ernziele	
Zieltyp	Beschreibung
Kenntnisse	Modellbildung
	Strukturierung
	Systemgrenzen
	Systemzerlegung
	Schnittstellen
	Systemfunktionen
	Verhaltensmodellierung Statecharts (SC)
	hybride Netze
	Nebenläufigkeit
	Hierarchie und Historie
	Aktionskonzept
	Petrinetze (PN)
	S/T-Netze
	Netzelemente
	Netzmatrix
	Vorbereichsmatrix
	Nachbereichsmatrix
	B/E-Netze
	Verhaltensanalyse Schaltsequenzen
	E-Graph
	Überdeckungsgraph
	Invarianten
	Verhaltensbewertung
	Lebendigkeit
	Reversibilität
	Beschränktheit
	Determiniertheit
	Steuerungstechnisch Interpretierte
	Petrinetze (SIPN)
	Modellierungsmuster Komplementstelle / Reservierung
	Kanten
	Test
	Inhibitor
	Event
	Hierarchie
	zeitbehaftete Transitionen
	Transitionsunternetze
	Stellenunternetze
	Seiten
	variables Kantengewicht
Kenntnisse	Steuerungssysteme
	Signalverarbeitung
	Echtzeit
	Arten
	Herkunft von Zeitbedingungen
	Diskretisierung
	Wert

Sensorik

Besondere Voraussetzungen

keine

Begleitmaterial

digitale Vortragsfolien
zur Vorlesung, digitale
Übungsaufgabensammlung,
Entwicklungswerkzeuge
für Petrinetzentwurf,
digitale Tutorials für
Selbststudium
Themenscripte
Hilfsblätter
Videos

Separate Prüfung

Nein

Signaltechnischer Aufbau Sensorsysteme Kalibrierung Aktorik Signaltechnischer Aufbau Aktorsysteme Steuerungsgeräte IPC Programmorganisation Ressourcen RTOS Tasks und Threads Scheduling Gerätebeispiele μC-Boards Prozessrechner PAC RTU SPS EN61131 Konfiguration Ressourcen zyklische Tasks EA-Variable Programmorganisation POE Datentypen Funktionsbausteine Programmiersprachen vergleichende Übersicht prozedural (ST) grafische Sprachen (FB) musterbasierte Implementierung von SIPN auf SPS Gerätebeispiele verteilte Automatisierungssysteme Kommunikation Strukturen Stern Bus Ring Redundanz Verfahren **Shared Memory** Message Passing asynchron synchron Rendezvous **Futures** OSI-Modell Protokollschichten MAC-Verfahren deterministisch nicht deterministisch Feldbusse Industrie (EN61158) Interbus Profibus Profinet Automotive CAN Flexray Netze

Protokollschichten IEEE802 ΙP Transportprotokolle UDP TCP SCTP Industrial Ethernet Hardware QoS Redundanz (RSTP) Virtuelle Netze (VLAN) Leitsysteme EN 61499 Architektur Programmierung Sicherheit Gerätesicherheit Netzwerksicherheit MES und ERP Stückgutverfolgung Automatische Objektidentifikation (AutoID) Objekthistorie Protokolle

Fertigkeiten Verhalten ereignisdiskreter

Systeme modellieren

Systemverhalten aus Texten

verstehen

technische Textabschnitte

vollständig erfassen

implizite Angaben erkennen und

verstehen

fehlende Angaben erkennen und

ableiten bzw. erfragen

als State Chart (SC) modellieren

FSM als Spezialfall erkennen

Steuerungstechnisch

Interpretiertes Netz

als Petrinetz modellieren

BE-Netz

ST-Netz

Syntax beherrschen

Muster und Makros erkennen und

zielführend anwenden

hierarchisches Netz

tiefe Hierarchien verwenden

flache Hierarchie verwenden

Steuerungstechnisch

Interpretiertes Netz

Petrinetz-Entwicklungswerkzeug

verstehen und zielgerichtet

einsetzen

Modelle verifizieren

Bewertungskriterien definieren

Äquivalenz

Vollständigkeit

Determiniertheit

Lebendigkeit

Reversibilität

Beschränktheit

Einhalten von

Model lierungsvorgaben

...

Testfälle definieren

statische Reviews durchführen und

dokumentieren

Selbst

mit Peer

grafische Analyse

(mathematische Analyse)

dynamische Tests im Simulator

durchführen

Modelle anhand der

Testergebnisse korrigieren und

optimieren

Steuerungssysteme entwerfen
Echtzeit
Echtzeitbedingungen ableiten
geeignete Steuerungsgeräte
auswählen
geeignete Bussysteme auswählen
Echtzeitfähigkeit von
Steuerungssystemen nachweisen
SPS in ST programmieren
(EN61131-3)
Syntax beherrschen
Funktionsbausteine einsetzen
Implementierungsmuster für SIPN
herleiten und nutzen
Codegenerator für SIPN
konzipieren
für B/E-Netze
für S/T-Netze
Kontrollfluss in Leitsystemen nach
EN61499 modellieren

Aufwand Präsenzlehre Typ Präsenzzeit (h/Wo.) Vorlesung 2 Übungen (ganzer Kurs) 1 Übungen (geteilter 0 Kurs) Tutorium (freiwillig) 1

Projekt

Lernziele	
Zieltyp	Beschreibung
Fertigkeiten	Steuerung programmieren kommerzielles SPS- Entwicklungswerkzeug verstehen und zielgerichtet einsetzen wesentliche Eigenschaften einer SPS konfigurieren Programmiersprache ST beherrschen synchrones Message Passing anwenden Funktionsbausteine in der Programmierung anwenden
Fertigkeiten	Simulator für Zielsystem im Zusammenspiel mit SPS- Entwicklungswerkzeug nutzen
Fertigkeiten	komplexe Aufgaben im Team bewältigen einfache Projekte planen und steuern Absprachen und Termine einhalte Reviews planen und durchführen
Fertigkeiten	Realweltsysteme modellieren System analysieren umfangreiche technische Texte erfassen und zielgerichtet auswerten Außenschnittstellen erkennen und korrekt nutzen System strukturieren sinnvolle Teilsysteme definieren Teilsystemfunktionen definieren Schnittstellen definieren Modell der Steuerung entwerfen hierarchisches Steuerungsmodell konzipieren Teilsystemsteuerungen als SIPN modellieren Teilsystemsteuerungen prüfen Funktion im Petrinetzsimulator testen im Peer-Review verifizieren, bewerten und freigeben Teilsystemsteuerungen integrierer Gesamtmodell der Steuerung im Simulator verifizieren

Besondere Voraussetzungen

keine

Begleitmateria	Beg	leitm	ateria
----------------	-----	-------	--------

digital vorgegebene
Projektaufgabe
(Lastenheft),
Entwicklungswerkzeuge
für Petrinetzentwurf
und SPSProgrammierung,
Tutorials (Script, Video)
Zielsystem
Emulator für Zielsystem
Programmgerüst für
SPS

Separate Prüfung

Separate Prüfung

Separate Prutung	
Prüfungstyp	Projektaufgabe im Team bearbeiten (z.B. im Praktikum)
Details	3 Präsenztermine je 4h je Projektgruppe, Abschlusspräsentation
Mindeststandard	Finden sinnvoller Systemgrenzen und Modellierung eines hierarchischen Gesamtsystems und der konzipierten Teilsysteme. Implementierung der Steuerung auf einem professionellen Steuerungsgerät

	Fertigkeiten	Steuerungsprogramm für SPS entwerfen SPS konfigurieren zyklische Tasks definieren vordefinierte EA-Variablen nutzen vordefinierte Bedienoberfläche nutzen Modelltransformationen anwenden Modelle der Teilsystemsteuerungen musterbasiert auf SPS implementieren hierarchische Gesamtsystemsteuerung integrieren Implementierung verifizieren Teilsystemtest am Emulator für Zielsystem Integrationstest am Emulator für
-	Fertigkeiten	Steuerung am Zielsystem in Betrieb nehmen

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Projekt	1
Tutorium (freiwillig)	0

© 2022 Technische Hochschule Köln