

TH Köln

Modulhandbuch DML

Data Mining

Bachelor Elektrotechnik 2020

Version: 1 | Letzte Änderung: 12.02.2021 13:50 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Rhein

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	DDML Rhein
Gültig ab	Sommersemester 2023
Modul ist Bestandteil der Studienschwerpunkte	SE - Smart Energy IOT - Internet of Things
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Data Mining
Zeugnistext (en)	Data Mining
Unterrichtssprache	deutsch
abschließende Modulprüfung	Ja

Modulprüfung	
Benotet	Ja
Konzept	Abhängig von der Anzahl der Teilnehmer: Bei wenigen Teilnehmern Kombination aus Klausur oder mündlicher Prüfung und Bewertung des Mini-Projektes Bei vielen Teilnehmern Prüfung über Klausur; Mini-Projekt als Voraussetzung zur Teilnahme an der Klausur
	In der Klausur bzw. mündlichen Prüfung werden die Methoden, Vorgehensweisen, Fallstricke und gesetzliche Grundlagen des Data Mining geprüft. Im Mini-Projekt wird die Fähigkeit zu selbständigem eigenverantwortlichem Handeln und der Umgang mit geeigneter Software abgeprüft.
Frequenz	Jedes Semester

Allgemeine Informationen

Inhaltliche Voraussetzungen

MA1 - mathematische Modelle
Mathematik 1 verstehen und aufstellen
Differentialrechnung

MA2 - Funktionen mit mehreren
Mathematik 2 Veränderlichen anwenden

Lineare Algebra: Matrizen aufstellen und mit ihnen rechnen

Handlungsfelder

Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren, Geräte, Komponenten und Anlagen.

Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.

IT Administration, Projektcontrolling einschließlich Budget. Tätigkeiten in Verwaltung, Behörden und Ministerien.

Learning Outcomes

ID	Learning Outcome
LO1	Was: Methoden des maschinellen Lernens auf typische Datensätze der Elektrotechnik oder technischen Informatik anwenden gängige Fallstricke des Data Mining in der Vorgehensweise kennen für eine Aufgabenstellung das geeignete Verfahren bestimmen können
	Qualität von Datensätzen beurteilen Datenschutzgesetze kennen weit verbreitete Software hierfür anwenden eigenverantwortliches Arbeiten lernen
	Womit: Die Methoden werden anhand eines Vortrags oder per Lernvideos vermittelt und in Vorlesung und Übung direkt angewendet. Jeder Student wird ein kleines Projekt durchführen (je nach Anzahl der Studierenden in Gruppenarbeit).
	Wozu: Data Mining wird bei den späteren Arbeitgebern immer mehr eingeführt, etwa in der Robotik, aber auch zur Überwachung und Steuerung von Produktionsprozessen oder Energiesystemen und zur Auswertung von Kundendaten, hier ist ein verantwortlicher Einsatz von Daten wichtig.

Kompetenzen

Kompetenz	Ausprägung
Finden sinnvoller	Voraussetzungen für
Systemgrenzen	diese Kompetenz
	(Wissen,) werden
	vermittelt

Abstrahieren	diese Kompetenz wird vermittelt
Erkennen, Verstehen und analysieren technischer Zusammenhänge	diese Kompetenz wird vermittelt
MINT Modelle nutzen	diese Kompetenz wird vermittelt
Technische Systeme analysieren	diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten	diese Kompetenz wird vermittelt
In unsicheren Situationen entscheiden	diese Kompetenz wird vermittelt
Lernkompetenz demonstrieren	diese Kompetenz wird vermittelt

Vorlesung / Übungen

Тур	Vorlesung / Übungen
Separate Prüfung	Nein
Exemplarische inhaltliche	Einführung in eine geeignete Software, z.B. Python
Operationalisierung	Einführung in deskriptive Statistik und evtl. auch
	Wahrscheinlichkeitsrechnung
	Überwachtes Lernen:
	- Klassifikationsverfahren: Ablauf, Performanzmaße, Anwendung eines
	Verfahrens des instanzbasierten Lernen, z.B. k-nearest-neighbor und eines
	Verfahrens des modellbasierten Lernen, z.B. Entscheidungsbäume
	- evtl. Regressionsanalyse: über maschinelles Lernen und klassisch
	Unüberwachtes Lernen:
	- Clusteranalyse: k-means, evtl. auch DBSCAN
	Preprocessing der Daten:
	- Behandlung von beschädigten / fehlenden Daten
	- Ausreißer oder Noise - Problematik
	- Skalierung
	- Visualisierung der Daten
	- evtl. Dimensionsreduzierung
	- Beurteilung der Qualität der Daten
	- evtl. verschiedene Arten von Datensätzen betrachten, Bezug zu NoSql-
	Datenbanken herstellen
	Ausblick auf aktuelle Forschung, z.B. Bilderkennung, Natural Language
	Processing, Reinforcement Learning

© 2022 Technische Hochschule Köln