TH Köln

Modulhandbuch MA1

Mathematik

Bachelor Optometrie 2021

Version: 1 | Letzte Änderung: 15.12.2020 00:07 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Knospe

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	MA1 Knospe		
Gültig ab	Wintersemester 2022/23		
Fachsemester	1		
Dauer	1 Semester		
ECTS	10		
Zeugnistext (de)	Mathematik 1		
Zeugnistext (en)	Mathematics 1		
Unterrichtssprache	deutsch		
abschließende Modulprüfung	Ja		

Modulprüfung	9
Benotet	Ja
Konzept	Schriftliche Prüfung (Klausur)
Frequenz	Jedes Semester

- Allgemeine Informationen

Inhaltliche Voraussetzungen

Handlungsfelder

Auslegung, Entwicklung und Anwendung optischer Komponenten und Systeme

Verständnis der physiologischen und anatomischen am Sehprozesse beteiligten biologischen Bereiche, Einordnen und Bewerten klinischer Studien

Learning Outcomes

ID Learning Outcome

LO1

Was: Das Modul vermittelt die grundlegenden Konzepte und Methoden der Mathematik, die in der Technik benötigt werden (K. 3). Die Abstraktion und mathematischen Formalisierung von Problemen soll erlernt und angewendet werden (K. 2). Die Studierenden lernen in der Mathematik die Grundzüge wissenschaftlichen Arbeitens kennen (K. 12). Womit: Der Dozent/die Dozentin vermittelt Wissen und Basisfertigkeiten in der Vorlesung. In der Übung bearbeiten die Studierenden unter Anleitung Aufgaben. Die Übung wird durch Hausaufaben und Online-Aufgaben (E-Learning) ergänzt. Zusätzlich findet ein Tutorium statt. Wozu: Grundlegende Mathematik-Kenntnisse werden in mehreren Modulen des Studiengangs benötigt und sind anerkannter Teil der Basisausbildung. Mathematische Methoden sind essentiell zur Planung, Realisierung und Integration technischer Anwendungen (HF 1). Die Analyse und Bewertung von Anforderungen, Konzepten und Systemen erfordert häufig mathematische Methoden (HF 2).

Kompetenzen

Kompetenz	Ausprägung
Abstrahieren	diese Kompetenz wird vermittelt
MINT Modelle nutzen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt

Augenoptische Systeme simulieren	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Augenoptische Systeme analysieren	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Augenoptische Systeme entwerfen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Augenoptische Systeme realisieren	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Informationen beschaffen und auswerten	diese Kompetenz wird vermittelt
Arbeitsergebnisse bewerten	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Komplexe Aufgaben im Team bearbeiten	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Sich selbst organisieren und reflektieren	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt

– <u>Vorlesung / Übungen</u>

Тур	Vorlesung / Übungen
Separate Prüfung	Ja

Separate Prüfung			
Benotet	Ja		
Frequenz	Einmal im Jahr		
Gewicht	10		
Bestehen notwendig	Nein		
Voraussetzung für Teilnahme an Modulprüfung	Nein		
Konzept	Bewertung von abgegebenen Übungsaufgaben (Hausaufgaben) und Online- Aufgaben (E-Learning).		

Exemplarische inhaltliche Operationalisierung

Grundlagen - Mengen, Zahlen, Summen, Produkte, Fakultät, Binomialkoeffizienten - Reelle Zahlen, Anordnung, Intervalle, Betrag, Vollständigkeit -Aussagenlogik - Vollständige Induktion - Abbildungen und ihre Eigenschaften - Reelle Funktionen, Beschränktheit, Monotonie, Umkehrfunktion Elementare Funktionen -Polynome und rationale Funktionen - Potenz-, Wurzel-, Exponential-, Logarithmusfunktionen -Trigonometrische Funktionen Folgen, Reihen und Stetigkeit -Reelle Folgen und Grenzwerte -Reihen und Konvergenzkriterien -Potenzreihen und Konvergenzradius - Grenzwerte von Funktionswerten - Stetigkeit und Eigenschaften stetiger Funktionen - Asymptoten Differentialrechnung -Differenzierbarkeit und Ableitung - Ableitungsregeln - Höhere Ableitungen - Extremstellen und Kurvendiskussion - Taylor-Polynom, Taylor-Reihe - Newton-Verfahren - Regel von de l'Hospital Integralrechnung -Riemann-Integral, Definition und Eigenschaften - Hauptsatz der Differential- und Integralrechnung - Uneigentliche Integrale - Partielle Integration -Substitutionsregel -Partialbruchzerlegung Vektoren, Matrizen und lineare Gleichungssysteme -Vektorrechnung im R^n -Erzeugendensystem, lineare Unabhängigkeit und Basis des R^n - Skalarprodukt -Vektorprodukt - Geraden -Ebenen - Matrizen und ihre Rechenregeln - Lineare Gleichungssysteme und Gaußscher Algorithmus - Lineare Unabhängigkeit, Erzeugendensystem und Basis -Rang einer Matrix - Quadratische Matrizen und invertierbare Matrizen - Determinante -

Cramersche Regel (optional)