TH Köln

Modulhandbuch ZR

Zustandsregelung

Master Elektrotechnik 2020

Version: 2 | Letzte Änderung: 29.09.2019 09:39 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Große

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	ZR Große
Gültig ab	Wintersemester 2020/21
Fachsemester	1
Modul ist Bestandteil des Studienschwerpunkts	<u>AU -</u> <u>Automatisierungstechnik</u>
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Zustandsregelung
Zeugnistext (en)	State Space Control
Unterrichtssprache	deutsch
abschließende Modulprüfung	Nein

- <u>Allgemeine Informationen</u>

Inhaltliche Voraussetzungen

Handlungsfelder

Forschung: Von der Grundlagenforschung bis hin zur Industrieforschung und der Qualifikation für ein Promotionsstudium. Entwicklung: Algorithmen, Software, Verfahren, Geräte, Komponenten und Anlagen.

Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.

Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb.

Learning Outcomes

ID	Learning Outcome
LO1	- Digitale Regler (Einsatzgründe, Funktionsweise, Abtastzeiten)
	- Differenzengleichungen
	- z-Transformation
	- Stabilität, Regelverhalten in Abhängikeit der Pole
	- Zustandsraum im Zeitkontinuierlichen
	- Normalformen, Transformation der Zustandsraumdarstellung
	- Steuerbarkeit, Beobachtbarkeit
	- Reglerentwurf nach Polvorgabe
	- Vorfilter, Kompensator
	- Beobachterentwurf nach Polvorgabe
	- Optimaler Reglerentwurf
	- Zustandsraum im Zeitdiskreten

Kompetenzen

Kompetenz	Ausprägung
Komplexe Systeme analysieren	diese Kompetenz wird vermittelt
Komplexe Systeme abstrahieren	diese Kompetenz wird vermittelt
Komplexe technische	diese Kompetenz wird
Systeme entwickeln	vermittelt
Modelle komplexer	diese Kompetenz wird
Systeme bewerten	vermittelt
MINT Fachwissen	diese Kompetenz wird
erweitern und vertiefen	vermittelt

Studienrichtungsspezifisch Fachwissen erweitern und vertiefen	he s liese Kompetenz wird vermittelt
Komplexe technische Systeme prüfen	diese Kompetenz wird vermittelt
Komplexe wissenschaftliche Aufgaben selbständig bearbeiten	diese Kompetenz wird vermittelt

Vorlesung / Übungen

Тур	Vorlesung / Übungen
Separate Prüfung	Ja
Exempla-	Beispiele aus der Praxis werden
rische	in Matrizengleichungen
inhaltliche	überführt und so die zugehörige
Operatio-	Zustandsdarstellung hergeleitet.
nalisierung	Hieran erfolgt der Regler- und
	Beobachterentwurf, welcher
	algebraisch verifiziert wird
	(Probe) und am
	Simulationsmodell erprobt wird.

Separate Prüfung	
Benotet	Nein
Frequenz	Jedes Semester
Konzept	Klausur mit Aufgaben und zu beantwortende Fragen; Nutzung eines Rechnerraumes mit der Software Scilab zur Unterstützung der Matrizenrechenoperationen

Praktikum

Тур	Praktikum
Separate Prüfung	Ja
Exempla- rische inhaltliche Operatio- nalisierung	Mittels eines Matrizenrechenprogramm werden die Rechenwege auf komplizierte Aufgaben der Industrie übertragen und gerechnet. Die anschließende
	Simulation des geschlossenen Regelkreises erlaubt eine schnelle Überprüfung der Entwurfsparameter.

Separate Prüfung	
Benotet	Nein
Frequenz	Einmal im Jahr
Konzept	Präsenzübung und Selbstlernaufgaben; Abgabe von zwei Ausarbeitungen zu je einem zu rechnenden Problem; individuelle Aufgaben für jeden Studierenden.

© 2022 Technische Hochschule Köln