

TH Köln

Course

INF1 - Computer Science 1

Version: 1 | Last Change: 27.09.2019 20:30 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Computer Science 1
Approving CModule	INF1 BaMT
Responsible	Prof. DrIng. Arnulph Fuhrmann Professor Fakultät IME
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	90
ECTS	6
Professors	Prof. DrIng. Arnulph Fuhrmann Professor Fakultät IME Prof. DrIng. Luigi Lo Jacono
	Prof. DrIng. Luigi Lo Iacono ehemaliger Professor Fakultät IME
Requirements	none
Language	German
Separate final exam	Yes

Final exam

Details

Students must demonstrate the following competences in a written examination:

- Development of short programmes to solve defined problems described in colloquial language (K.4)
- Development of short programs to solve abstractly described problems (K.2, K.5)
- Reading, understanding and, if necessary, correction of given program fragments (K.4, K.10)
- Evaluation of statements with regard to their correctness (K.12)

Minimum standard

At least 50% of the total number of points.

Exam Type

Students must demonstrate the following competences in a written examination:

- Development of short programmes to solve defined problems described in colloquial language (K.4)
- Development of short programs to solve abstractly described problems (K.2, K.5)
- Reading, understanding and, if necessary, correction of given program fragments (K.4, K.10)
- Evaluation of statements with regard to their correctness (K.12)

Lecture / Exercises

Learning goals

Knowledge

foundations

computer architectures

Von Neumann model

processor

memory

I/O

binary data coding

integer

characters and strings

floating point number

media data

images

audio

compiled, interpreted, hybrid languages

imperative programming

syntax, keywords, comments

variables

primitive data types

operators and expressions

arithmetic operators

boolean operators

bit operators

expressions

arithmetic

boolean

precedence of operators

elementary data structures

arrays

characters and strings

references

control flow statements
input / output
procedural programming
structuring the program code
functions
recursion
moduls and libraries
modeling
object-oriented programming
classes
objects
methods
encapsulation
inheritance
polymorphism
software quality
Error handling, debugging
testing
documentation
Skills

design and modeling abstracting problem descriptions into algorithms deciding what programming concepts and primitives are required to solve a particular problem

design and modelling of software systems with UML

programming in Java checking source code for programming errors

developing programs for solving concrete problems applying fundametal programming concepts

reading and understanding third-party source code

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	3
Exercises (whole course)	0
Exercises (shared course)	2
Tutorial (voluntary)	2

Separate exam

Exam Type

solving exercises within limited functional / methodical scope

Details

Independent solving of self-learning tasks on the topics of the lecture in the form of the development of more complex programs to solve problems described in colloquial or abstract language (K.4, K.5, K.9, K.2).

Minimum standard

More than 80% of all exercises submitted. A task is deemed to have been completed if it has been solved predominantly and independently.

© 2022 Technische Hochschule Köln