
Course
BVS2 - Operating Systems and Distributed Systems 2

Version: 5 | Last Change: 01.04.2022 09:46 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name Operating Systems and Distributed Systems 2

Approving CModule BVS2_BaET, BVS2_BaTIN

Responsible Prof. Dr. Cartsten Vogt
Professor Fakultät IME

Level Bachelor

Semester in the year summer semester

Duration Semester

Hours in self-study 60

ECTS 5

Professors Prof. Dr. Cartsten Vogt
Professor Fakultät IME

Requirements procedural programming

architecture of a digital computer (basic knowledge)

Internet protocols (basic knowledge)

full content of BVS1

Language English

Separate final exam Yes

Final exam

Details

Students shall prove that they can 1.) explain and apply fundamental terms, concepts, and techniques, 2.) identify and assess the impact of strategic

decisions in the implementation and execution of system software and 3.) apply programming and more abstract concepts to solve application

problems in the field of concurrent and distributed programming. Typical types of assignments are 1.) multiple choice questions, fill-in-the-blank texts,

file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_BVS2_BaET2020.html
file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_BVS2_BaTIN2020.html

assessment of statements, 2.) play through typical scenarios under certain assumptions about the system software and evaluate the findings and 3.)

write program code or develop a solution in a more abstract form to solve given problems of limited size.

Minimum standard

At least 50% of the total number of points.

Exam Type

Students shall prove that they can 1.) explain and apply fundamental terms, concepts, and techniques, 2.) identify and assess the impact of strategic

decisions in the implementation and execution of system software and 3.) apply programming and more abstract concepts to solve application

problems in the field of concurrent and distributed programming. Typical types of assignments are 1.) multiple choice questions, fill-in-the-blank texts,

assessment of statements, 2.) play through typical scenarios under certain assumptions about the system software and evaluate the findings and 3.)

write program code or develop a solution in a more abstract form to solve given problems of limited size.

Lecture / Exercises

Learning goals

Knowledge

cooperation

client-server model

examples: naming and file services

layered architectures

peer-to-peer model

procedural cooperation: remote procedure call

object-oriented cooperation

remote method invocation

object-orientierte middleware

web-based services

dynamic web pages

web services

implementation of software concurrency

management of processes

dispatching and scheduling

exceptions and interrupts

storage concepts

components of the storage hierarchy

swapping

virtual storage

processes in distributed systems

load distribution, fault tolerance, synchronization

file systems

logical and real structures

local file systems

implementation of directories

organisation of the hard disk

performance enhancement and fault tolerance

distributed file systems

file server and name server

distributed directory trees

caching and replication

Services in distributed systems

fundamentals of cloud computing and web services

Apache-based systems

commercially available systems

Skills

assess various strategies and techniques for processor scheduling, for storage hierarchy management and for the implementation of file systems in

local and distributed environments

programming of and with services in local and distributed systems

Expenditure classroom teaching

Type Attendance (h/Wk.)

Lecture 2

Exercises (whole course) 1

Exercises (shared course) 1

Tutorial (voluntary) 0

Separate exam

none

Practical training

Learning goals

Knowledge

C functions of the UNIX/Linux programming interface to communicate and cooperate locally and in the Internet

by using shared memory, message queues, and sockets

by using Remote Procedure Call

Java techniques for communication and cooperation

web services: SOAP, REST

others as appropriate (to be determined on short notice)

Skills

application of the aspects listed above to real-world scenarios in small teams

Expenditure classroom teaching

Type Attendance (h/Wk.)

Practical training 1

Tutorial (voluntary) 0

Separate exam

Exam Type

working on practical scenarion (e.g. in a lab)

Details

Students work in small teams. Each team completes multiple "rounds" with assigned appointments in the lab. In each round, programming assigments

are solved.

For the preparation of a laboratory appointment a "preparation sheet" has to be solved. The acquired knowledge will be tested at the beginning of the

appointment (short written entrance test, interview with the supervisor). In case of failure, a follow-up appointment must be taken; in case of multiple

failures, the student will be excluded from the lab. In case of success, a "laboratory work sheet" with further tasks will be worked on under supervision

(and, if necessary, with assistance).

Minimum standard

Successful participation in all laboratory appointments, i.e. in particular independent solution (or with some assistance if necessary) of the

programming assignments.

© 2022 Technische Hochschule Köln

