

TH Köln

Course

FEM - Finite element method in electrical engineering

Version: 2 | Last Change: 29.04.2022 18:23 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

^ General information

Long name	Finite element method in electrical engineering
Approving CModule	SIM MaET
Responsible	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Level	Master
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Requirements	- Electrostatic: field strength, flux density, dielectrics - Electromagnetism: field strength, flux density, flux, magnetic circuits, induced voltage
Language	German
Separate final exam	No

Lecture / Exercises

Learning goals

Skills

Discretisation of physical problems using the example of an electrostatic arrangement

- One-dimensional model
- Two-dimensional model
- Replacement of partial derivatives by finite differences
- Boundary conditions
- Setting up the linear system of equations
- Different methods for solving the system of equations
- Result representation with interpolation
- Use of boundary-fitted grids
- Solving a two-dimensional electrostatic problem with FEM software
- Exploiting symmetries in the simulation
- Solving a two-dimensional magnetic problem with FEM software
- Extending the magnetic problem to include non-linear material properties
- Extension of the simulation by program-controlled variation of parameters and automatic output of characteristic diagrams with Python

Carry out and critically evaluate FEM simulations on various physical effects

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	2
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

Exam Type

other course-related type of test

Details

The students independently solve tasks in which given physical arrangements are to be calculated with an FEM programme. Subsequently, a report is written in the form of a conference paper.

The examinations during the course consist of three tasks with different scope and correspondingly different influence on the grade:

- 1. Simulation of two electrostatic arrangements. Exploitation of model symmetries. (20 %)
- 2. Simulation and optimisation of a magnetic arrangement with materials with linear and non-linear magnetisation characteristic. (20 %)
- 3. Automation of a simulation of a magnetic arrangement with Python and calculation of characteristics by parameter variation and output to a diagram. (60 %)

Translated with www.DeepL.com/Translator (free version)

Minimum standard

- Functional simulation with physically meaningful results.
- Comprehensible presentation of the results in the respective report.
- Achievement of 50% of the total points to be awarded.

© 2022 Technische Hochschule Köln