

TH Köln

Course

IBV - Industrial Image Processing

Version: 2 | Last Change: 23.09.2019 09:14 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Industrial Image Processing
Approving CModule	IBV BAET, IBV BATIN
Responsible	Prof. Dr. Lothar Thieling Professor Fakultät IME
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Lothar Thieling Professor Fakultät IME
Requirements	basic skills in signal processing basic skills in Java and/or C basic skills in analysis and linear algebra
Language	German
Separate final exam	Yes

Final exam

Details

The students should demonstrate the following competences in an oral exam: 1.) Safe handling of basic concepts and mechanisms. 2.) Analyze problems in the field of industrial image processing and solve them with suitable methods. 3.) Analyze existing solutions and explain the used algorithmic and theory.

Minimum standard

At least 50% of the total number of points

Exam Type

The students should demonstrate the following competences in an oral exam: 1.) Safe handling of basic concepts and mechanisms. 2.) Analyze problems in the field of industrial image processing and solve them with suitable methods. 3.) Analyze existing solutions and explain the used algorithmic and theory.

Lecture / Exercises

Learning goals

Knowledge

image construction, global image properties, and access to image data

graylevel and color images

global image properties,

mean value, variance, entropy

histogram, cumulative histogram

development environment

software design tools

compiler

linker

debugger

softwaretools for image processing and image analysis

softare-based access to image data and parameters

overview of the available ip-modules (moduls dor image processing and image analysis)

design and implementation of own ip-moduls

design of algorithmic chains based on ip-modules using visual programming

gray level transformation

linear gray level transformation, histogram spreading

non-linear gray level transformation

histogram equalization

local histogram equalization

look-up-table

analysis and processing of color images

technical and human color perception

additive and subtractive color mixing

RGB color space

HSI color space

transformation RGB to HSI and vise versa

rank-order operators (non-linear filtering)

max, min, median

morphologische Operatoren

erosion, dilation

opening, closing

locating structures

analysis and processing in frequency domain
fourier analysis and synthesis of one-dimensional digital signals
real spectrum, imaginary spectrum
amplitude spectrum, phase spectrum
filtering in frequency domain
fourier analysis and synthesisf of images
real spectrum, imaginary spectrum
amplitude spectrum, phase spectrum
filtering in spatial domain
non directional filter
directional filter
inverse filtering

linear filtering in spatial domain

convolution, convolution, transfer function

typical convolution maks (mean, gauß, differencial-operator, sobel-operator, laplace-operator)

gradient and its calculation using differential-operator and sobel-operator

analysis and evaluation of the operator in the frequency domain

Tracking

normalized cross-correlation

without prediction

with prediction (kalman filter)

measuring of subpixel edges

one-dimensional

two-dimensional using gradient

Skills

the presented methods for image enhancement can be

named

described

delineated in terms of application areas

evaluated in terms of advantages and disadvanteges

problemspecific parameterized

the presented color spaces and corresponding algorithms can be

named

described

delineated in terms of application areas

evaluated in terms of advantages and disadvanteges

problemspecific parameterized

the presented methods for non liniar filtering can be

named

described

delineated in terms of application areas

evaluated in terms of advantages and disadvanteges

problemspecific parameterized

maryzeu		
lesigned		
liscussed		
he presented methods for linear filtering can be (space and frequency don	nain)	
named		
lescribed		
lelineated in terms of application areas		
valuated in terms of advantages and disadvanteges		
problemspecific parameterized		
Expenditure classroom teaching		
Туре	Attendance (h/Wk.)	
Турс	Attendance (ii) vvi.)	
Lecture	2	
Exercises (whole course)	0	
Exercises (whole course)	0	
Exercises (shared course)	0	
Tutorial (voluntary)	0	
Separate exam		
none		
<u>Practical training</u>		
<u></u> 9		
_earning goals		
3 3		
Skills		
ourposeful handling of the tool chain for image processing		
ranposerar namaling of the tool chain for image processing		
leal with complex tasks in a small team		
еа мит сопрієх кажу ін а зінан сеані		
larive compley solutions that can be implemented using image processing	and image analysis	
erive complex solutions that can be implemented using image processing and image analysis		

Attendance (h/Wk.)

Spectra of images and / or convolution masks can be

Expenditure classroom teaching

Туре

Practical training	2
Tutorial (voluntary)	0

Separate exam

none

© 2022 Technische Hochschule Köln