

TH Köln

Course

MLWR - Machine Learning and Scientific Computing

Version: 1 | Last Change: 27.09.2019 16:03 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Machine Learning and Scientific Computing
Approving CModule	MLWR MaCSN, MLWR MaET, MLWR MaTIN
Responsible	Prof. Dr. Beate Rhein Professor Fakultät IME
Level	Master
Semester in the year	summer semester
Duration	Semester
Hours in self-study	60
ECTS	5
Professors	Prof. Dr. Beate Rhein Professor Fakultät IME
Requirements	Basic knowledge of probability theory and machine learning
Language	German
Separate final exam	Yes

Final exam

Details

Questions of different degrees of difficulty and different aspects of the course (course of a project, performance measures, data protection, etc.) some in-depth questions

It is possible to write down sketches and formulas.

Minimum standard

be able to describe the rough sequence of a machine learning or scientific computing project

Being able to explain discussed procedures roughly

Exam Type Questions of different degrees of difficulty and different aspects of the course (course of a project, performance measures, data protection, etc.)

It is possible to write down sketches and formulas.

Lecture / Exercises

Learning goals

some in-depth questions

	_
Knowledge	
Approximation methods	
metamodeling	
regression	
Multi-criteria optimization	
formulation	
Pareto front	
algorithms	
visualization	
Advanced Cluster Analysis	
Association Pattern Mining	
Outlier Detection	
Advanced classification procedures	
possibly text recognition, web mining, time series analysis	
	-
Skills	

Be familiar with mathematical methods, which are suitable for application tasks, convert them into run-time and memory optimized programs using numerical methods and skilful implementation Know approximation methods and select and apply the appropriate method for a task Formulate an application task as a multi-criteria optimization task and solve it in a program Know methods of machine learning, select and apply appropriate procedures

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2

Exercises (whole course)	2
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

none

^ Practical training

Learning goals

Skills

Apply and program methods of approximation, multicriteria optimization or machine learning efficiently implement numerical methods

Evaluate the complexity of algorithms

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

Separate exam

none

© 2022 Technische Hochschule Köln