

TH Köln

Course

PBO - Project-based optics

Version: 2 | Last Change: 13.10.2019 18:19 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Project-based optics
Approving CModule	PBO BaET
Responsible	Prof. Dr. Michael Gartz Professor Fakultät IME
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Michael Gartz Professor Fakultăt IME
Requirements	Geometric optics Optical metrology wave optics Mathematics 1/2 Physics 1/2 elementary geometry
Language	German
Separate final exam	Yes

Final exam

Details

Oral examination in which the taxonomy levels of understanding, applying, analysing, synthesising and evaluating are tested by students presenting and explaining their projects carried out during the semester and showing that they can understand and apply the technical terms, theories and

procedures developed in the lecture, have analysed the requirements of their project task and have synthesised a solution to their project task and can evaluate it in the examination interview.

Minimum standard

50 % of the guestions and tasks out of all parts of the examination correctly answered

Exam Type

Oral examination in which the taxonomy levels of understanding, applying, analysing, synthesising and evaluating are tested by students presenting and explaining their projects carried out during the semester and showing that they can understand and apply the technical terms, theories and procedures developed in the lecture, have analysed the requirements of their project task and have synthesised a solution to their project task and can evaluate it in the examination interview.

Lecture

basics superstructure evaluation applications

Learning goals

Knowledge Matrix Sensors CCD sensors superstructure mode of action sensitivity noise sources CMOS sensors superstructure mode of action sensitivity noise sources Image error corrections dark current correction flat field correction interfaces Analog / BAS Firewire 1394 Ethernet / GigE Holographic interferometry double exposure holography hasics superstructure evaluation applications time-average holography

Dasics	
superstructure	
evaluation	
applications	
Chromatic longitudinal aberrations	
basics	
superstructure	
evaluation	
applications	
Chapters of students' choice	
Laser Material Processing	
basics	
cold ablation	
thermal processing	
laser types	
applications	
Optical Shop Testing	
Twyman Green Interferometer	
Fizeau Interfermometer	
Laser Doppler Anemometry	
Interferometric speed measurement	
heterodyne principle	
applications	
(Students' suggestions)	
Skills	
calculate	
the dynamics of a CCD sensor	
of deformations in holographic interferometry	
of oscillation amplitudes in holographic interferometry	
the working range of the chromatic longitudinal aberration	
sensor	
the resolution of the light section sensor	
define	
the resolution of matrix sensors	
the working range depending on a measuring task	
the working range depending on a measuring task	
determine	
of the wavefront aberrations	

laser light sectioning

of the sensitivity of a CDD sensor $\,$

of the measuring signal of a light section sensor of the usability of a matrix sensor for a specific measurement

assess

task

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Tutorial (voluntary)	0

Separate exam

none

^ Project

Learning goals

Skills
Adjusting optical superstructures
Recording and documenting of measurement series
Create diagrams
Ergebnisse auf Plausibilität überprüfen
Recognizing and understanding of interrelationships
error calculation
analyse an optical measuring task
Independently recognized measuring task can be analyzed Analyzing a given measuring task
design a solution approach for the analyzed optical measuring task
Consideration of laboratory resources
Consideration of the available time quota
Presentation of a project outline
Describe the task
outline the approach
Present results in a clearly structured way
Discuss results in technical and scientific manner

Milestone presentation to check the progress of the project			
Describe the task			
outline the approach			
Present results in a clearly structured way			
Discuss results in technical and scientific manner			
Final presentation with presentation of the realized solution approach			
Describe the task			
outline the approach			
Present results in a clearly structured way			
Discuss results in technical and scientific manner			
realize basic optical structures yourself			
build			
adjust			
Carry out function test			
investigate scientific/technical principles with an optical structure			
Plan measurement series			
Estimate error influences			
Check the suitability of the superstructure			
Evaluate self-acquired measurement series			
Graphic display of measured values			
Calculate implicit quantities from measured values math.			
correctly			
discover and name logical errors			
Simulate measured values using predefined formulas			
Work on complex technical tasks in a team			
Organize into subtasks			
Discuss measurement results			
complement each other meaningfully			

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Project	2
Tutorial (voluntary)	0

Separate exam

none