

Course

SIGA - Signal Theory and Applied Mathematics

Version: 1 | Last Change: 12.09.2019 21:31 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Signal Theory and Applied Mathematics
Approving CModule	SIGA BaMT
Responsible	Prof. Dr. Dietmar Kunz Professor Fakultät IME im Ruhestand
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	102
ECTS	7
Professors	Prof. Dr. Dietmar Kunz Professor Fakultät IME im Ruhestand
Requirements	tangible school knowledge Mathematics 1 Mathematics 2
Language	German
Separate final exam	Yes

Final exam

Details

In the written exam problems are given with respect to the subjects of th lecture. The problems are intended to be real-world as much as possible. Thus the student should show that he or she is able to transfer the real-word problem into the mathematical framework.

Minimum standard

All important steps are result in points. For passing the exam, 50% of the maximum number of points is sufficient.

Exam Type

In the written exam problems are given with respect to the subjects of th lecture. The problems are intended to be real-world as much as possible. Thus the student should show that he or she is able to transfer the real-word problem into the mathematical framework.

Lecture

Learning goals

Knowledge

description of signals and LTI-systems using the Fourier-transform analog non-periodic signals and systems analog periodic signals and systems discrete non-periodic signals and systems discrete periodic signals and systems description of discrete signals and systems using the z-transform

ranom variables and their characterization fundamentals of mathematical statistcs estimators

tests

random signals and noise

Expenditure classroom teaching

Туре	Attendance (h/Wk.)	
Lecture	4	
Tutorial (voluntary)	0	

Separate exam

none

<u>Exercises</u>

Learning goals

Skills

Solve exercises to the subjects at hand.

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Exercises (whole course)	2
Exercises (shared course)	0
Tutorial (voluntary)	2

Separate exam

Exam Type

solving exercises within limited functional / methodical scope

Details

Active participation in exercise lessons, adequate processing of given exercise problems.

Minimum standard

Active participation in 80 % of the exercise lessons.

© 2022 Technische Hochschule Köln