

TH Köln

Course

SRF - Radiation, radiometry, photometry

Version: 1 | Last Change: 06.10.2019 13:46 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Radiation, radiometry, photometry
Approving CModule	SRF BaET, SRF BaOPT
Responsible	Prof. Dr. Michael Gartz Professor Fakultät IME
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Michael Gartz Professor Fakultät IME
Requirements	differential calculus, integral calculus, trigonometry, elementary geometry
Language	German
Separate final exam	Yes

Final exam

Details

Written examination with differentiated types of exercises of taxonomy ratings like understanding, appliance, analyzing and synthesizing.

That means, within the exercises the terms like the basic optical principles of radiometry and photometry and the dihedral angle have to be

understood and can be exerted.

The optical correlations like radiation transfer law have to be understood and to be exerted for analyzed optical questions.

Understood and remembered formula and optical principles have to be combined for the solving of new types of exercises. Formulas have to be converted.

Minimum standard

50 % of the exercises with different taxonomy ratings correctly processed

Exam Type

Written examination with differentiated types of exercises of taxonomy ratings like understanding, appliance, analyzing and synthesizing.

That means, within the exercises the terms like the basic optical principles of radiometry and photometry and the dihedral angle have to be understood and can be exerted.

The optical correlations like radiation transfer law have to be understood and to be exerted for analyzed optical questions.

Understood and remembered formula and optical principles have to be combined for the solving of new types of exercises. Formulas have to be converted.

Lecture / Exercises

Learning goals

Knowledge

basic optical principles of radiometry and photometry spectrum of electromagnetic radiation

colour

colour temperature

radiometric basic optical principles:

differential solid angle

radiant energy, power, output power per unit solid angle

power output per unit area, power output per unit solid angle

and unit emitting area, power input per unit area,

energy per unit area

photometric basic optical principles:

luminance, luminous flux, luminosity,

photometric brightness, illuminance, illumination

Lambertian radiator

radiation transfer law

material classification figures to describe the interaction

radiation with material

spectral reflectance

spectral transmittance

spectral absorptance

spectral emissivity

thermal equilibrium

stationariness

radiation laws of the Black-body radiation:

Planck's law

Rayleigh-Jeans law

ultraviolet catastrophe

Wien's law of radiation

Wien's displacement law

Stefan-Boltzmann law
Kirschhoffsche laws
Scattering
Raylegh scattering
Mie scattering
radiation detector:
photodiode
spectrometer
bolometer
spezial detectors

properties of specialized elements and optical systems:
radiationen sources
black-body radiator
grey radiator
luminescence radiator
specialized radiation sources: synchrotron, plasma source
etc.
selective radiators
pyrometric
optical set-up,
functionality
correction of environmental temperature
light sources:
halogen lamp
electric discharge lamp
LED
Skills
calculation of
conversion of the spectral energy density to spectral radiance
conversion of the frequency specific spectral radiance to
wave length specific spectral radiance
spectral radiant exitance from spectral radiance
conversion between radiometric quantity

S

CC and photometric quantity radiant efficiency wave length from band gap in case of led's

to distinguish specified time of thermal radiators specified time of luminescence radiators

to evaluate and to assess thermal radiators luminescence radiators

discharge radiation sources

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

none

Practical training

Learning goals

Skills	
align of optical settings	
make record series of measurements and document them	
generate diagrams	
checking results for plausibility	
recognize and understand correlations	
make mathematical error analysis	
realize basical optical set-ups, assemble, align, make a function	onal check
investigate natural scientific and technical principles by optical	al set-ups
project record series of measurements,	
estimate error effects,	
check the suitability of the set-up	

make the evaluation of self generated record series of measurements present measurement values graphically

calculate implicit values in correct mathematical manner from

measurement values
recognize logical errors and name them
simulate measurement values with given formulas

compose a traceable report
describe the conceptual formulation
state the method of resolution
represent the results in a clear manner
discuss the results in a technical, academic manner

work on complex technical tasks by teamwork organize in subtasks present the results and make a critical discussion

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

Separate exam

none

© 2022 Technische Hochschule Köln