

Lehrveranstaltung BVS1 - Betriebssysteme und Verteilte Systeme 1

Version: 3 | Letzte Änderung: 01.04.2022 09:35 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

^ Allgemeine Informationen

Langname	Betriebssysteme und Verteilte Systeme 1
Anerkennende LModule	BVS1 BaET, BVS1 BaTIN
Verantwortlich	Prof. Dr. Cartsten Vogt Professor Fakultät IME
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	60
ECTS	5
Dozenten	Prof. Dr. Cartsten Vogt Professor Fakultät IME
Voraussetzungen	prozedurale Programmierung Architektur von Digitalrechnern (Grundkenntnisse) Internetprotokolle (Grundkenntnisse)
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Abschlussprüfung

Details

Die Studierenden sollen in einer schriftlichen Klausur folgende Kompetenzen nachweisen: 1.) Sicherer Umgang mit grundlegenden Begrifflichkeiten, Konzepten und Techniken, 2.) Anwendung programmiersprachlicher und abstrakterer Konstrukte zur Lösung von Anwendungsproblemen bei der nebenläufigen und verteilten Programmierung, 3.) Prüfung von Lösungsvorschlägen auf Korrektheit. Typische Aufgabenformen zu 1.) sind Multiple-Choice-Fragen, Lückentexte, Bewertung von Aussagen hinsichtlich ihrer Korrektheit, zu 2.) Lösung kleinerer umgangssprachlich formulierter Probleme durch Programmstücke oder in abstrakterer Form und zu 3.) das Finden von Fehlern in Aussagen und vorgegebenen Programmstücken.

Mindeststandard

Mindestens 50% der möglichen Gesamtpunktzahl.

Prüfungstyp

Die Studierenden sollen in einer schriftlichen Klausur folgende Kompetenzen nachweisen: 1.) Sicherer Umgang mit grundlegenden Begrifflichkeiten, Konzepten und Techniken, 2.) Anwendung programmiersprachlicher und abstrakterer Konstrukte zur Lösung von Anwendungsproblemen bei der nebenläufigen und verteilten Programmierung, 3.) Prüfung von Lösungsvorschlägen auf Korrektheit. Typische Aufgabenformen zu 1.) sind Multiple-Choice-Fragen, Lückentexte, Bewertung von Aussagen hinsichtlich ihrer Korrektheit, zu 2.) Lösung kleinerer umgangssprachlich formulierter Probleme durch Programmstücke oder in abstrakterer Form und zu 3.) das Finden von Fehlern in Aussagen und vorgegebenen Programmstücken.

^ Vorlesung / Übungen

Lernziele

Kenntnisse

Grundlagen von Betriebssystemen und Verteilten Systemen

Einordnung und Aufgaben eines Betriebssystems im Rechensystem

zu verwaltende Betriebsmittel

Nebenläufigkeit in Hard- und Software

Komponenten und Eigenschaften Verteilter Systeme

Software-Strukturen

Betriebssystemkern

Hierarchische Strukturen

Virtuelle Maschinen

Client-Server-Systeme

Peer-to-Peer-Systeme

Das UNIX/Linux-Betriebssystem

Geschichte und Standards

Schalenstruktur

Kern mit Programmierschnittstelle

Shell mit Benutzerschnittstelle

wichtige Benutzerkommandos

Aufbau des Dateisystems

Programmierung in C

Nebenläufigkeit

Prozesse und Threads

grundlegende Eigenschaften

Prozesse in UNIX

Threads in Java

Synchronisation

grundlegende Synchronisationsbedingungen

wechselseitiger Ausschluss

Reihenfolge

Mechanismen zur Durchsetzung

Interruptsperrung

Spinlocks

Semaphore		
Monitore		
Deadlocks		
Kommunikation		
Grundbegriffe		
speicher- vs. nachrichtenbasierte Kommunikation		
Mailboxen und Ports		
synchrone vs. asynchrone Kommunikation		
okale Kommunikation hared Memory		
Pipes		
Kommunikation in verteilten Systemen		
Protokolle		
Sockets		
Forts Litera		
Fertigkeiten		
Umgang mit den Schnittstellen eines Betriebssystems		
zeichenorientierte Benutzerschnittstelle (Konsole)		
Programmierschnittstelle		
rrogrammerschintestene		
Steuerung nebenläufiger Aktivitäten in einem Betriebssystem		
von der Benutzerschnittstelle aus		
durch Funktionen der Programmierschnittstelle		
Synchronisation nebenläufiger Ausführungen durch Synchronisationsmech	hanismen	
Nutzung verschiedener Kommunikationsmechanismen		
lokale Mechanismen		
Mechanismen in Rechnernetzen		
Wednesday		
A 6 18 " 11		
Aufwand Präsenzlehre		
Тур	Präsenzzeit (h/Wo.)	
Vorlesung	2	
Übungen (ganzer Kurs)	1	
Übungen (geteilter Kurs)	1	
Tutorium (freiwillig)	0	

Separate Prüfung

Signale

Praktikum

Lernziele

Kenntnisse

Befehle der zeichenorientierten UNIX/Linux-Benutzerschnittstelle

Nutzung durch Eingabe über die Tastatur

Nutzung durch Einbettung in Shell Scripts

insbesondere zur Steuerung nebenläufiger Prozesse

C-Funktionen der UNIX/Linux-Programmierschnittstelle

zum Zugriff auf Dateien und Geräte

zur Erzeugung und elementaren Steuerung von Prozessen

zur Synchronisation von Prozessen

zur Kommunikation von Prozessen (lokal und im Netz) - je nach verfügbarer Zeit

Fertigkeiten

Anwendung der unter "Kenntnisse (fachliche Inhalte)" genannten Aspekte auf praxisbezogene Szenarien durch selbstständige Arbeit in kleinem Team.

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)	
Praktikum	1	
Tutorium (freiwillig)	0	

Separate Prüfung

Prüfungstyp

praxisnahes Szenario bearbeiten (z.B. im Praktikum)

Details

Die Studierenden schließen sich zu Kleingruppen zusammen. Jede Kleingruppe absolviert mehrere "Praktikumsrunden" mit zugewiesenen Laborterminen. In jeder Runde werden Programmieraufgaben gelöst.

Zur Vorbereitung eines Labortermins muss ein "Vorbereitungsblatt" praktisch gelöst werden. Die dabei erworbenen Kenntnisse werden zu Beginn des Termins geprüft (kurzer schriftlicher Eingangstest, persönliches Gespräch mit dem Betreuer). Wird diese Prüfung nicht bestanden, so muss ein Folgetermin wahrgenommen werden; im Wiederholungsfall führt dies zum Nichtbestehen des Praktikums. Im Erfolgsfall wird ein "Laborarbeitsblatt" mit weiteren Aufgaben unter Aufsicht (und ggf. mit Hilfestellung) bearbeitet.

Mindeststandard

Erfolgreiche Teilnahme an allen Laborterminen, d.h. insbesondere selbstständige (ggf. mit Hilfestellung) Lösung der Programmieraufgaben.

© 2022 Technische Hochschule Köln