

TH Köln

Lehrveranstaltung PH2 - Physik 2

Version: 5 | Letzte Änderung: 24.02.2021 16:19 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

^ <u>Allgemeine Informationen</u>

Langname	Physik 2
Anerkennende LModule	PH2 BaET
Verantwortlich	Prof. Dr. Karl Kohlhof Professor Fakultät IME
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	60
ECTS	5
Dozenten	Prof. Dr. Karl Kohlhof Professor Fakultät IME
Voraussetzungen	Funktionen (sin, cos, exp, ln) Gleichungen und Gleichungssysteme (lineare, quadratische) Analysis (Differential- und Integralrechnung) Lineare Algebra (2-/3-dim. Vektorrechnung) Differentialgleichungen Komplexe Zahlen Physikalische Grundbegriffe Kinematik, Dynamik Kräfte, Newtonsche Axiome Arbeit, Energie, Energieerhaltung Impuls, Impulserhaltung Drehmoment, Drehimpuls Schwingungen von Masse-Feder-Systemen (frei/angeregt, ungedämpft/gedämpft)
Unterrichtssprache	deutsch

Abschlussprüfung

Details

Schriftliche Klausur, nur im Einzelfall mündliche Prüfung, mit folgenden Elementen:

- Multiple-Choice und Zuordnungsfragen zur Abfrage grundsätzlicher Begriffe, Zusammenhänge und Analogien
- Freitext-Antworten zur Abfrage weitergehender Kenntnisse und dem Grundverständnis physikalischer Zusammenhänge
- Erstellung von Skizzen zur Prüfung des weitergehenden Verständnisses
- Anwendungsnahe Text-Aufgaben, zu deren Lösung das physikalische Probleme analysiert und reduziert, ein geeignetes Modell ausgewählt und mathematisch angewandt werden muss.

Mindeststandard

50 % der Fragen und Aufgaben richtig bearbeitet

Prüfungstyp

Schriftliche Klausur, nur im Einzelfall mündliche Prüfung, mit folgenden Elementen:

- Multiple-Choice und Zuordnungsfragen zur Abfrage grundsätzlicher Begriffe, Zusammenhänge und Analogien
- Freitext-Antworten zur Abfrage weitergehender Kenntnisse und dem Grundverständnis physikalischer Zusammenhänge
- Erstellung von Skizzen zur Prüfung des weitergehenden Verständnisses
- Anwendungsnahe Text-Aufgaben, zu deren Lösung das physikalische Probleme analysiert und reduziert, ein geeignetes Modell ausgewählt und mathematisch angewandt werden muss.

Vorlesung / Übungen

Lernziele

Kenntnisse

Mechanik

- Überlagerung von Schwingungen (Schwebungen)
- Wellen, Wellenausbreitung (longitudinal, transversal)
- Überlagerung von Wellen (Interferenzen), stehende Wellen

Optik

- Huygens-Fresnel-Prinzip
- Reflexion, Totalreflexion, Brechung, Beugung
- Dopplereffekt (klassisch)
- Geometrische Optik

Wärmelehre

- Kinetische Gastheorie, ideale Gase
- Wärmeausdehnung, absolute Temperatur
- Hauptsätze der Wärmelehre
- Thermodynamische Prozesse (isotherm, isobar, isochor, adiabatisch)

Fertigkeiten

Analogien erkennen und anwenden, z.B. mechanische / elektrische Schwingung

Bewegungsgleichungen aus Kräftebilanzen oder Energiebilanzen ableiten und anwenden

Wellenausbreitungsvorgänge beschreiben und erklären

Überlagerung harmonischer Wellen ableiten und stehende Wellen berechnen

Bernoulli-Gleichung anwenden und Zustandsgrößen des Fluids bestimmen

Thermomechanischer Zustandsgrößen (Druck, Volumen, Temperatur) aus den Hauptsätzen ableiten

Physikalische Problemstellungen analysieren, physikalische Modelle anwenden und berechnen

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Übungen (ganzer Kurs)	2
Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

Separate Prüfung

keine

^ Praktikum

Lernziele

Kenntnisse

Fehlerrechnung

- Systematische und zufällige Messabweichungen
- Absolue und relative Messabweichungen
- Graphische Bestimmung der Messabweichungen
- Rechnerische Bestimmung der Messabweichungen
- Fehlerstatistik (Verteilung, Mittelwert, Standardabweichung)
- Fehlerfortpflanzung

Demonstrationsversuch

- Mathematisches Pendel

Laborversuche

- Fallbeschleunigung
- Temperaturabhänggkeit von Widerständen

- Gedämpfte Drehschwingung

Online-Versuch

- Erzwungene Drehschwingung

Fertigkeiten

Versuchsaufbau analysieren, modifizieren und verifizieren

Messdaten aufnehmen und ein einfaches Protokoll erstellen

Fehlerrechnung durchführen und Messabweichung bewerten

Messdaten auswerten, beurteilen und mit Erwartung bzw. bekanntem Wert vergleichen

Bericht strukturiert erstellen

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Praktikum	1
Tutorium (freiwillig)	0

Separate Prüfung

Prüfungstyp

Projektaufgabe im Team bearbeiten (z.B. im Praktikum)

Details

Online-Eingangstest zur Kontrolle der Vorbereitung der Studierenden

Bewertung des Versuchsberichts

Mindeststandard

70 % des Online-Tests richtig

80 % der Messergebnisse richtig

80 % der Auswertung korrekt durchgeführt

Diskussion der Auswertung vorhanden

© 2022 Technische Hochschule Köln