

TH Köln

Modul

NLO - Nichtlineare Optik

Master Elektrotechnik 2020

Version: 1 | Letzte Änderung: 29.09.2019 18:21 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Oberheide

Allgemeine Informationen

Anerkannte Lehrveranstaltungen	NLO Oberheide
Fachsemester	2
Modul ist Bestandteil des Studienschwerpunkts	PHO - Optische Technologien
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Nichtlineare Optik
Zeugnistext (en)	Nonlinear Optics
Unterrichtssprache	deutsch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet	Ja
Frequenz	Jedes Semester

Prüfungskonzept

mündliche Prüfung, bei großer Prüfungszahl schriftliche Klausur mit Überprüfung der Taxonomiestufen Verstehen und Anwenden durch Beschreibung von elementaren Anwendungen und Wechselwirkungsprozessen in idealisierter Anwendungsumgebung. Die Taxonomiestufen Analysieren und Synthetisieren können anhand von realen Anwendungsfällen und der damit verbundenen Auswahl von erforderlichen optischen Komponenten und Verfahren nach den jeweils ermittelten Wechselwirkungsprozessen überprüft werden.

^ Allgemeine Informationen

Inhaltliche Voraussetzungen

Kompetenzen

Kompetenz	Ausprägung
MINT Fachwissen erweitern und vertiefen	Vermittelte Kompetenzen
Studienrichtungsspezifisches Fachwissen erweitern und vertiefen	Vermittelte Kompetenzen
Komplexe Systeme analysieren	Vermittelte Kompetenzen
Komplexe Systeme abstrahieren	Vermittelte Kompetenzen
Modelle komplexer Systeme bewerten	Vermittelte Kompetenzen
Komplexe wissenschaftliche Aufgaben selbständig bearbeiten	Vermittelte Kompetenzen
Anerkannte Methoden für wissenschaftliches Arbeiten beherrschen	Vermittelte Kompetenzen
Forschungs- und Entwicklungs-Ergebnisse darstellen	Vermittelte Kompetenzen
Situations- und sachgerecht argumentieren	Vermittelte Kompetenzen

^ Vorlesung / Übungen

Exemplarische inhaltliche Operationalisierung

Unterschied von Materialeigenschaften in Bereichen niedriger und hoher Lichtintensitäten

Nutzung von physikalischen Prinzipien zur Optimierung von Wechselwirkungsprozessen (Doppelbrechung, Dispersion, Phasenanpassung)

Komponenten zum Einsatz in nichtlinearen optischen Systemen u.a. bei der Erzeugung von ultrakurzen Laserpulsen (Modelocking, Kerr-Effekt,

Chirped-Pulse-Amplification)

Materialbearbeitung mit ultrakurzen Laserpulsen

Seminar

Exemplarische inhaltliche Operationalisierung

Vorträge zu Anwendungen/Prozessen, die auf den Inhalten der Lehrveranstaltung aufbauen (Transfer der Lehrveranstaltungsinhalte auf weitere Anwendungen):

- spektralen Verbreiterung in einem Femtosekundenlaser durch Selbstphasenmodulation
- zeitliche Vermessung ultrakurzer Laserpulse
- Ausgleich von Abbildungsfehlern durch den Einsatz von phasenkonjugierenden Spiegeln
- Laserinduzierte Kernfusion
- Multiphotonenprozesse
- Erzeugung und Anwendung höherer Harmonischer
- Optisch-Parametrische-Oszillatoren
- Freie-Elektronen-Laser

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Präsentation zu einer vorgegebenen Thematik mit Literaturrecherche

Die Präsentation soll zielgruppengerecht auf die fachlichen Vorkenntnisse der Studierenden der Lehrveranstaltung angpasst sein und eine inhaltliche Diskussion ermöglichen.

© 2022 Technische Hochschule Köln