

TH Köln

Modul

SE - Software Engineering

Bachelor Elektrotechnik 2020

Version: 1 | Letzte Änderung: 27.10.2019 21:01 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Kreiser

Allgemeine Informationen

Anerkannte Lehrveranstaltungen	SEA Kreiser
Fachsemester	4
Modul ist Bestandteil der Studienschwerpunkte	SE - Smart Energy. AU - Automatisierungstechnik
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Software Engineering Automatisierungstechnik
Zeugnistext (en)	Software Engineering Automatisierungstechnik
Unterrichtssprache	deutsch und englisch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet	Ja
Frequenz	Jedes Semester

Prüfungskonzept

Mündliche Prüfung nach schriftlicher Vorbereitung.

Anhand einer natürlichsprachlichen Beschreibung eines realitätsnahen Automatisierungssystems angemessener Komplexität modellieren die Studierenden das Systemmodell eines zur Lösung der Automatisierungsaufgabe geeigneten Softwaresystems und begründen und bewerten die wesentlichen Eigenschaften ihres Entwurfs. Zur Begründung und Bewertung nehmen die Studierenden Bezug auf die spezifischen Anforderungen an das Automatisierungssystem sowie auf grundlegende Qualitätskriterien für automatisierungstechnische Softwaresysteme (System-, Entwicklungs-, Betriebs-, Service- und Wartungsanforderungen) und zeigen dabei an ausgewählten Modellartefakten insbesondere, dass sich und wie sich das Systemmodell in ein Softwaremodell und anschließend in ein Implementierungsmodell transformieren lässt und welche Konsequenzen ihr Entwurf für die Modelle der nachfolgenden Entwurfsphasen hat.

^ Allgemeine Informationen

Inhaltliche Voraussetzungen

IP - Informatik Projekt	Erfassen einer in natürlicher Sprache gegebenen Softwarespezifikation Programmieren in einer prozeduralen Programmiersprache
PI2 - Praktische Informatik 2	Erfassen einer in natürlicher Sprache gegebenen Softwarespezifikation Programmieren in einer objektorientierten Programmiersprache Klassen und Objekte
EPR -	zielgerichtetes Arbeiten im Team

Erstsemesterprojekt

Kompetenzen

Kompetenz	Ausprägung
Erkennen, Verstehen und analysieren technischer Zusammenhänge	Vermittelte Kompetenzen
Technische Zusammenhänge darstellen und erläutern	Vermittelte Kompetenzen
Finden sinnvoller Systemgrenzen	Vermittelte Kompetenzen
Abstrahieren	Vermittelte Kompetenzen
Technische Systeme analysieren	Vermittelte Kompetenzen
Technische Systeme entwerfen	Vermittelte Kompetenzen
Technische Systeme realisieren	Vermittelte Kompetenzen
Technische Systeme prüfen	Vermittelte Kompetenzen
Informationen beschaffen und auswerten	Vermittelte Kompetenzen
Arbeitsergebnisse bewerten	Vermittelte Kompetenzen
Komplexe technische Aufgaben im Team bearbeiten	Vermittelte Kompetenzen
Lernkompetenz demonstrieren	Vermittelte Kompetenzen

Sprachliche und interkulturelle Fähigkeiten anwenden	Vermittelte Kompetenzen
Gesellschaftliche und ethische Grundwerte anwenden	Vermittelte Kompetenzen
In unsicheren Situationen entscheiden	Vermittelte Kompetenzen
Sich selbst organisieren und reflektieren	Vermittelte Kompetenzen
Betriebswirtschaftliches und rechtliches Grundwissen benennen, erklären und anwenden	Vermittelte Voraussetzungen für Kompetenzen

^ Vorlesung / Übungen

Exemplarische inhaltliche Operationalisierung

System- und Softwaremodellierung anhand ausgewählter Stuktur- und Verhaltensnotationen der Unified Modeling Language (UML2) und/oder weiterer/anderer in der industriellen Praxis gebräuchlicher Notationen. Der Fokus der Betrachtungen liegt auf den frühen Projektphasen der Softwareentwicklung bis zur Konzeptphase, da hier der größte Teil der Lebenszykluskosten des Softwareprodukts verursacht wird.

Separate Prüfung

keine

Praktikum

Exemplarische inhaltliche Operationalisierung

Einsatz eines professionellen UML2-Modellierungswerkzeugs, das Round-Trip-Engieenering unterstützt, z.B. Visual Paradigm. Einsatz einer professionellen Softwareentwicklungsumgebung für C++, z.B. Microsoft Visual Studio oder Eclipse-basierte Umgebungen. Als Laufzeitsystem kann z.B. ein PC mit einer Geräte- oder Anlagenemulation oder ein reales technisches Zielsystem (Gerät, Anlage) mit eingebetteter Steuerung zum Einsatz kommen.

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Round-Trip-Engineering: nachvollziehbare, auf Basis der Anforderungen und Rahmenbedingungen begründete Transformationen zw. Systemmodell, Softwaremodell, Implementierungsmodell und Quellcode durchführen.

Projekt

Exemplarische inhaltliche Operationalisierung

Entwicklung des Systemmodells und ggfs. wesentlicher Artefakte des Softwaremodells / der Softwarearchitektur eines zur Lösung einer realitätsnahen Automatisierungsaufgabe geeigneten Softwaresystems. Die Komplexität und der erwartete Arbeitsumfang zur Lösung der Aufgabenstellung richten sich nach dem verfügbaren Zeitkontingent des Projektteams (abh. von der Teamgröße).

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Anhand einer natürlichsprachlichen Beschreibung (Englisch) eines realitätsnahen Automatisierungssystems angemessener Komplexität modellieren die Studierenden das Systemmodell eines zur Lösung der Automatisierungsaufgabe geeigneten Softwaresystems und begründen und bewerten die wesentlichen Eigenschaften ihres Entwurfs. Zur Begründung und Bewertung nehmen die Studierenden Bezug auf die spezifischen Anforderungen an das Automatisierungssystem sowie auf grundlegende Qualitätskriterien für automatisierungstechnische Softwaresysteme (System-, Entwicklungs-, Betriebs-, Service- und Wartungsanforderungen) und zeigen dabei an ausgewählten Modellartefakten insbesondere, dass sich und wie sich das Systemmodell in ein Softwaremodell und anschließend in ein Implementierungsmodell transformieren lässt und welche Konsequenzen ihr Entwurf für die Modelle der nachfolgenden Entwurfsphasen hat.

© 2022 Technische Hochschule Köln