

TH Köln

Modul

SMP - Signalverarbeitung mit Matlab/Python und µC

Bachelor Elektrotechnik 2020

Version: 5 | Letzte Änderung: 11.09.2019 21:46 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Elders-Boll

^ Allgemeine Informationen

Anerkannte Lehrveranstaltungen	SMP Elders-Boll
Fachsemester	5
Modul ist Bestandteil der Studienschwerpunkte	<u>IOT - Internet of Things</u> <u>IUK - Informations- und Kommunikationstechnik</u>
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Signalverarbeitung mit Matlab/Python und Mikroprozessoren
Zeugnistext (en)	Real-time Digital Signal Processing
Unterrichtssprache	deutsch und englisch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet	Ja
Frequenz	Einmal im Jahr

Prüfungskonzept

In der Projektarbeit implementieren die Studierenden eine vorgegebenes Verfahrens der digitalen Signalverarbeitung in Teamarbeit und weisen somit nach, dass sie in der Lage sind Systeme und Anwendungen der Signalverarbeitung in unterschiedichen Anwendungsbereichen entwickeln zu können

Für die Modulnote werden die Projektarbeit, die Abschlusspräsentation der Projektarbeit und der schriftliche Bericht zur Projektarbeit jeweils nach mehreren Kriterien separat bepunktet und dann aus der Gesamtpunkzahl die Modulnote abgeleitet.

^ Allgemeine Informationen

Inhaltliche Voraussetzungen

DSS

-Diskrete Signale und Systeme

Grundbegriffe von zeitdiskreten Signale und Systemen, Stabilität, Kausalität,

LSI-Systeme: zeitdiskrete Faltung zeitdiskreter Signale, FIR und IIR Filter Abtatstung, Abtasttheorem, Aliasing

DTFT, Frequenzgang

z-Transformation, Zusammenhang zwischen Frequenzgang und Übertragungsfunktion,

Blockschaltbilder DFT, Leakage-Effekt

Kompetenzen

Kompetenz	Ausprägung
Technische Systeme analysieren	Vermittelte Kompetenzen
Technische Systeme entwerfen	Vermittelte Kompetenzen
Technische Systeme realisieren	Vermittelte Kompetenzen
Technische Systeme prüfen	Vermittelte Voraussetzungen für Kompetenzen
Komplexe technische Aufgaben im Team bearbeiten	Vermittelte Kompetenzen
Sprachliche und interkulturelle Fähigkeiten anwenden	Vermittelte Kompetenzen

Vorlesung

Exemplarische inhaltliche Operationalisierung

Prinzipien der digitalen Signalverarbeitung:

Abtastung und Rekonstruktion

Digitale Filter

DFT und FFT

Implementierung der Faltung mit Hilfe der FFT

Spektralanalyse

Signalgenerierung

Echtzeitsignalverarbeitung: Interrupt und Polling Blockbasierte Signalverarbeitung

Grundlagen der digitalen Signalverarbeitung anwenden:

Grundlegende Prinzipien der digitalen Signalverarbeitung verstehen und erklären können

Unterschiedliche Filter Typen und Implementierungen vergleichen und bewerten können

Implementierung und Echtzeitsignalverarbeitung:

Grundlegende Problematik der Echtzeitsignalverarbeitung darstellen können

Einflussfaktoren auf die Verarbeitungsgeschwindigkeit benennnen können

Grundlegende Verfahren zur Echtzeitsignalverarbeitung verstehen und erklären können

Separate Prüfung

keine

Praktikum

Exemplarische inhaltliche Operationalisierung

Angeleitete praktische Laborübungen zur Anwendung der in der Vorlesung vermittelten theoretischen Kenntnisse durch Implementierung einfacher Verfahren der Signalverarbeitung in Python/Matlab und auf Mikroprozessoren.

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Durch ausreichend häufige Teilnahme an den praktischen Übungen erwerben die Studierenden durch Anwendung der in der Vorlesung vermittelten theoretischen Kenntnisse die zur Bearbeitung der Projekte erforderlichen praktischen Fertigkeiten.

^ Projekt

Exemplarische inhaltliche Operationalisierung

Implementierung eines vorgegebenen Verfahrens der digitalen Signalverarbeitung in Teamarbeit: Verstehen des vorgegebenen Algorithmus, gfs. mit Literaturrecherche von Sekundärliteratur Implementieren des Algorithmus in Matlab Implementieren des Algorithmus auf der Zielplatform
Präsentation der erreichten Ergebnisse

Separate Prüfung

keine

© 2022 Technische Hochschule Köln