Lichtmikroskopie
Bachelor Elektrotechnik 2020
PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Elektrotechnik
Version: 1 | Letzte Änderung: 19.09.2019 15:05 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Altmeyer
Anerkannte Lehrveranstaltungen | LMK_Altmeyer |
---|---|
Gültig ab | Wintersemester 2022/23 |
Fachsemester | 5 |
Dauer | 1 Semester |
ECTS | 5 |
Zeugnistext (de) | Lichtmikroskopie |
Zeugnistext (en) | Light microscopy |
Unterrichtssprache | deutsch oder englisch |
abschließende Modulprüfung | Ja |
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen. |
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse. |
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb. |
Benotet | Ja | |
---|---|---|
Konzept | So weit die Prüfungszahl nicht zu groß ist, wird eine mündliche Prüfung gegenüber einer schriftlichen Prüfung bevorzugt. In der Prüfung werden auf unterstem Kompetenzniveau Kenntnisse abgefragt. Dies sind beispielsweise die Baugruppen, die in jedem Mikroskop enthalten sind, der Auflicht- und Durchlicht Strahlengang in einem Mikroskop mit Köhler'scher Beleuchtung, der Einbauort von Ringblende und Phasenring in einem Zernike Phasenmikroskop oder der Grund für die Richtungssensitivität in einem Mikroskop mit Differentiellen Interferen Kontrast. Auf nächster Kompetenzstufe werden Fertigkeiten geprüft. Dies kann beispielsweise dadurch erfolgen, dass die erforderlichen technischen Schlüsselparameter von Bauteilen in Mikroskopen berechnet werden, entweder auf der Basis von vorgegebenen Anwendungs-Spezifikationen oder auf der Basis von anderen, bereits verbauten Komponenten. Ebenso kann geprüft werden, ob die Einrichtung der Köhlerschen Beleuchtung begründet(!) in allen Schritten beschrieben werden kann. Die höchste prüfbare Kompetenzstufe betrifft die Methodenkompetenz. Deren Ausprägung kann überprüft werden, indem ein Anwendungsfall geschildert wird: Eine Aufgabe könnte sein, den Krümmungsradius einer Linsenoberfläche mit einem Mikroskop zu bestimmen. Hier ist die Auswahl des richtigen Mikroskopes entscheidend und auch der Messvorgang und die Auswertung bedürfen einer gut entwickelten Methodenkompetenz. EIne weitere Aufgabe könnte sein, die Phasenverschiebung zwischen zwei Objektstrukturen quatitativ auszumessen. |
|
Frequenz | Jedes Semester | |
ID | Learning Outcome | |
---|---|---|
LO1 |
Was: Das Modul vermittelt Kompetenzen zur Konzepzionierung (K.1, K.8, K.9), Auslegung (K.5, K.9, K.11, K.12, K.15 ), Analyse (K.2, K.3, K.7, K.11, K.14) und Überprüfung (K.4, K.10, K.11) von Lichtmikroskopen unter besonderer Berücksichtigung der zugrunde liegenden physikalischen Wirkprinzipien. Diese Wirkprinzipien werden letztlich nr exemplarisch an Lichtmikroskopen diskutiert und sind in viele Bereiche der technischen Optik übertragbar. Vorlesungsbegleitend findet ein projektnahes Praktikum statt. Sprachliche Kompetenzen (K.21) zur präzisen Darstellung technisch komplexer Zusammenhänge (K.13) werden durch verpflichtende schriftliche Vorbereitung und Ausarbeitung geschult. Die durchzuführende Fehleranalyse und -diskussion sowie Spiegelung an erwartbaren Ergebnissen, vermittelt Bewertungskompetenzen (K.14). Feste Zeitvorgaben und Termine für Vorbereitung, Ausarbeitung, Protokoll-Abgabe und ggf. Überarbeitung befördern die Selbstorganisation (K.20). Womit: Der Dozent vermittelt neben Wissen und Fertigkeiten in einer Vorlesung mit integrierten kurzen Übungsteilen die Kompetenz, verschiedene Eigenschaften von Licht (Aplitude, Phase, Polarisation, Wellenlänge) so zu nutzen, dass verschiedene Kontrastierungsverfahren in bildgebenden Systemen unter Ausnutzung eben dieser Eigenschaften ermöglicht werden. Durch die Diskussion der zu Grunde liegenden pysikalischen Wirkprinzipien wird die Transferleistung vond er Mikroskopie in andere Bereich der technischen Optik ermöglicht. Weiterhin wird ein Praktikum durchgeführt, welches projektartigen Charakter hat: Neben einer schriftlichen Vorbereitung sind Mikroskope selber aus Komponenten aufzubauen, zu justieren und mit diesen bildgebende und auch messtechnische Aufgaben durchzuführen. Zu jedem Versuch ist eine schriftiche Ausarbeitung erforderlich. Wozu: Kompetenzen im Verständnis, des Entwurfes, der Entwicklung, der Analyse und der Überprüfung von optisch bildgebenden und messtechnischen Systemen sind essentiell für viele Personen, die im Bereich der Optischen Technologien bzw. Photonik tätig sein wollen. Dies betrifft HF 1, HF 2 und HF 3 gleichermaßen. |
Kompetenz | Ausprägung |
---|---|
Finden sinnvoller Systemgrenzen | diese Kompetenz wird vermittelt |
Abstrahieren | diese Kompetenz wird vermittelt |
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären | diese Kompetenz wird vermittelt |
Erkennen, Verstehen und analysieren technischer Zusammenhänge | diese Kompetenz wird vermittelt |
MINT Modelle nutzen | diese Kompetenz wird vermittelt |
MINT-Grundwissen benennen und anwenden | diese Kompetenz wird vermittelt |
Technische Zusammenhänge darstellen und erläutern | diese Kompetenz wird vermittelt |
Technische Systeme analysieren | diese Kompetenz wird vermittelt |
Technische Systeme realisieren | diese Kompetenz wird vermittelt |
Technische Systeme prüfen | diese Kompetenz wird vermittelt |
Arbeitsergebnisse bewerten | diese Kompetenz wird vermittelt |
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen. |
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse. |
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb. |
ID | Learning Outcome | |
---|---|---|
LO1 |
Was: Das Modul vermittelt Kompetenzen zur Konzepzionierung (K.1, K.8, K.9), Auslegung (K.5, K.9, K.11, K.12, K.15 ), Analyse (K.2, K.3, K.7, K.11, K.14) und Überprüfung (K.4, K.10, K.11) von Lichtmikroskopen unter besonderer Berücksichtigung der zugrunde liegenden physikalischen Wirkprinzipien. Diese Wirkprinzipien werden letztlich nr exemplarisch an Lichtmikroskopen diskutiert und sind in viele Bereiche der technischen Optik übertragbar. Vorlesungsbegleitend findet ein projektnahes Praktikum statt. Sprachliche Kompetenzen (K.21) zur präzisen Darstellung technisch komplexer Zusammenhänge (K.13) werden durch verpflichtende schriftliche Vorbereitung und Ausarbeitung geschult. Die durchzuführende Fehleranalyse und -diskussion sowie Spiegelung an erwartbaren Ergebnissen, vermittelt Bewertungskompetenzen (K.14). Feste Zeitvorgaben und Termine für Vorbereitung, Ausarbeitung, Protokoll-Abgabe und ggf. Überarbeitung befördern die Selbstorganisation (K.20). Womit: Der Dozent vermittelt neben Wissen und Fertigkeiten in einer Vorlesung mit integrierten kurzen Übungsteilen die Kompetenz, verschiedene Eigenschaften von Licht (Aplitude, Phase, Polarisation, Wellenlänge) so zu nutzen, dass verschiedene Kontrastierungsverfahren in bildgebenden Systemen unter Ausnutzung eben dieser Eigenschaften ermöglicht werden. Durch die Diskussion der zu Grunde liegenden pysikalischen Wirkprinzipien wird die Transferleistung vond er Mikroskopie in andere Bereich der technischen Optik ermöglicht. Weiterhin wird ein Praktikum durchgeführt, welches projektartigen Charakter hat: Neben einer schriftlichen Vorbereitung sind Mikroskope selber aus Komponenten aufzubauen, zu justieren und mit diesen bildgebende und auch messtechnische Aufgaben durchzuführen. Zu jedem Versuch ist eine schriftiche Ausarbeitung erforderlich. Wozu: Kompetenzen im Verständnis, des Entwurfes, der Entwicklung, der Analyse und der Überprüfung von optisch bildgebenden und messtechnischen Systemen sind essentiell für viele Personen, die im Bereich der Optischen Technologien bzw. Photonik tätig sein wollen. Dies betrifft HF 1, HF 2 und HF 3 gleichermaßen. |
Kompetenz | Ausprägung |
---|---|
Finden sinnvoller Systemgrenzen | diese Kompetenz wird vermittelt |
Abstrahieren | diese Kompetenz wird vermittelt |
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären | diese Kompetenz wird vermittelt |
Erkennen, Verstehen und analysieren technischer Zusammenhänge | diese Kompetenz wird vermittelt |
MINT Modelle nutzen | diese Kompetenz wird vermittelt |
MINT-Grundwissen benennen und anwenden | diese Kompetenz wird vermittelt |
Technische Zusammenhänge darstellen und erläutern | diese Kompetenz wird vermittelt |
Technische Systeme analysieren | diese Kompetenz wird vermittelt |
Technische Systeme realisieren | diese Kompetenz wird vermittelt |
Technische Systeme prüfen | diese Kompetenz wird vermittelt |
Arbeitsergebnisse bewerten | diese Kompetenz wird vermittelt |
Typ | Vorlesung | |
---|---|---|
Separate Prüfung | Nein | |
Exemplarische inhaltliche Operationalisierung | Grundeigenschaften von Objekten und Mikroskopen Schärfentiefe Amplitduden-, Phasen- und gemischte Objekte optische Dichte, Absorptionskoeffizient Brechzahl, optischer Weg, Phasenverschiebung Phasenlage der Beugungsordnungen Auflicht, Durchlicht, Hellfeld, Dunkelfeld Phasen- und Interferenzmikroskope Kontrast der Abbildung Konstruktionsprinzipien spezieller Mikroskope Wellenfront teilende Mikroskope Differentieller Interferenzkontrast Interphako Amplitude teilende Mikroskope Linnik Interferenzkontrast Michelson Interferenzkontrast Mirau Interferenzkontrast Leitz'sches Mach-Zehner Mikroskop Beugunsordnungen teilende Mikroskope Mirksokop mit Phasenplättchen Zernike Phasenkontrast Kohärenz Sichtbarkeit von Interferenz zeitliche Kohärenz räumliche Kohärenz Kohärenzanforderungen in Mikroskopen |
Typ | Praktikum | |
---|---|---|
Separate Prüfung | Ja | |
Exemplarische inhaltliche Operationalisierung | Vergrößerungsreihe im Hellfeld-Durchlicht Auflösungsbestimmung in einer Aperturreihe Bildvergleich bei wechselnden Kontrastierungsmethoden laterale und axiale Größenmessung Formvermessung mit Linnik-Interferenz und mit konfokalen Methoden Brechzahlbestimmung mit einem Phasenmikroskop Isotropieuntersuchungen mit Differentiellen Interferenzkontrast |
Benotet | Nein | |
---|---|---|
Frequenz | undefined | |
Voraussetzung für Teilnahme an Modulprüfung | Ja | |
Konzept | Kenntnisse: Vor Antritt des Praktikums sind zu Hause ausgearbeitete Aufgaben vorzulegen. Die Grundideen zum Versuch werden vor dessen Durchführung im Gespräch erfragt. Fertigkeiten: Die Strategie Mikroskope zu justieren, d.h. die axiale und laterale Lage sowie Öffnung von Aperturblende und Feldblende, muss erläutert und beherrscht werden und wird in der Folge auch begleitet. Das Versuchsprotokoll wird überpüft auf sprachliche Fähigkeiten, insbesondere Wissenschaftlichkeit und Präzision im Ausdruck und Verständnis der Sachzusammenhänge Methoden : Die Auswertungen, vor allem die geforderten Interpretationen der Ergebnisse, erfordern immer ein gewisses Maß an Methodenkompetenz und können so überprüft werden. |
© 2022 Technische Hochschule Köln