Course Deep Learning Architectures
Responsible: Prof. Dr. Beate Rhein
Course
Meets requirements of following modules(MID)
Course Organization
Version |
created |
2013-06-06 |
VID |
1 |
valid from |
WS 2012/13 |
valid to |
|
|
|
Course identifiers |
Long name |
Deep Learning Architectures |
CID |
F07_DLA |
CEID (exam identifier) |
|
|
Contact hours per week (SWS) |
Lecture |
2 |
Exercise (unsplit) |
2 |
Exercise (split) |
|
Lab |
1 |
Project |
|
Seminar |
|
Tutorial(voluntary) |
|
|
|
Total contact hours |
Lecture |
30 |
Exercise (unsplit) |
30 |
Exercise (split) |
|
Lab |
15 |
Project |
|
Seminar |
|
Tutorial (voluntary) |
|
|
|
Max. capacity |
Exercise (unsplit) |
|
Exercise (split) |
|
Lab |
18 |
Project |
|
Seminar |
|
|
Total effort (hours): 180
Instruction language
Study Level
Prerequisites
- basic skills in neural networks
- strong programming skills (Python)
Textbooks, Recommended Reading
- I. Sommerville: Software Engineering (Addison-Wesley / Pearson Studium)
- H. Balzert et.al.: Lehrbuch der Softwaretechnik (Spektrum Akademischer Verlag)
- Basiskonzepte und Req.Eng.
- Softwaremanagement
- G.E. Thaller: Software- und Systementwicklung (Heise Verlag)
- Bernd Oestereich: Analyse und Design mit UML 2.3 (Oldenbourg)
- Gamma et.al.: Design Patterns, (Addison-Wesley)
- OMG Unified Modeling Language Spec., www.omg.org/uml
- K. Beck: eXtreme Programming (Addison-Wesley Professional)
- Ken Schwaber: Agiles Projektmanagement mit Scrum (Microsoft Press)
- H.D. Litke: Projektmanagement (Hanser)
Instructors
Supporting Scientific Staff
Transcipt Entry
Deep Learning Architectures
Assessment
Type |
oE |
normal case (except on large numbers of assessments: wE |
Total effort [hours] |
oE |
10 |
Frequency: 2-3/year
Course components
Lecture/Exercise
Objectives
Lerninhalte (Kenntnisse)
- Introduction Machine Learning
- Tooling
- Handling Machine Learing Frameworks
- Parallel Computing using GPUs
- Types of Neuronal Networks and application
- Feedforward Neuronal Networks and Backpropagation
- Convolutional Networks
- Recurrent Networks
- Deep Reinforcement Learning
- Introduction Reinforcement Learning
- Policy-Gradient Methods
- Actor-Critic Methods
Fertigkeiten (PFK 2)
- Knowing the mathematic principles of Algorithms
- Using Maschine Learning Frameworks
- Applying Algorithms on problems
- time series
- image classification
- complex environments (Games)
Kompetenzen (PFK 3)
- Classification of problems and identification of feasible solutions
- Evaluation of algorithms
- Independently gaining knowledge in complex field
Additional Component Assessment
Lab
Objectives
Fertigkeiten (PFK 4, PFK 5, PFK 6)
- Transfering knowledge from course on new problems
- Implementing algorithms on new problems
- Scientific Working and experiments
- Interpretation of results
Handlungskompetenz demonstrieren (PFK 7, PSK 1, PSK 3)
- Outline the results in a short paper
- Research in complex field
- Rate paper by relevance
- Rating the experiment results
- Rating the used algorithms
Additional Component Assessment
- Präsentation der Ergebnisse des Praktikums
- Beitrag zum LV-Ergebnis
- Intervall
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden