Lehrveranstaltungshandbuch Digital Signal Processing
Verantwortlich: Prof. Dr.-Ing. Harald Elders-Boll
Lehrveranstaltung
Befriedigt Modul (MID)
Organisation
Version |
erstellt |
2013-04-25 |
VID |
2 |
gültig ab |
WS 2012/13 |
gültig bis |
|
|
|
Bezeichnung |
Lang |
Digital Signal Processing |
LVID |
F07_DSP |
LVPID (Prüfungsnummer) |
|
|
Semesterplan (SWS) |
Vorlesung |
2 |
Übung (ganzer Kurs) |
1 |
Übung (geteilter Kurs) |
|
Praktikum |
1 |
Projekt |
|
Seminar |
|
Tutorium (freiwillig) |
|
|
|
Präsenzzeiten |
Vorlesung |
30 |
Übung (ganzer Kurs) |
15 |
Übung (geteilter Kurs) |
|
Praktikum |
15 |
Projekt |
|
Seminar |
|
Tutorium (freiwillig) |
|
|
|
max. Teilnehmerzahl |
Übung (ganzer Kurs) |
15 |
Übung (geteilter Kurs) |
|
Praktikum |
15 |
Projekt |
15 |
Seminar |
|
|
Gesamtaufwand: 150
Unterrichtssprache
Niveau
Notwendige Voraussetzungen
- No formal requirements, but students will be expected to be familiar with:
- Basic Knowledge of Signals and Systems
- Continuous-Time LTI-Systems and Convolution
- Fourier-Transform
- Basic Knowledge of Probability and Random Variables
Literatur
- John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing (4th Edition). Prentice Hall, 2006.
- Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing (3rd Edition). Prentice Hall, 2007.
- Vinay Ingle and John Proakis. Digital Signal Processing using MATLAB. Cengage Learning Engineering, 2011.
Dozenten
- Prof.Dr. Harald Elders-Boll
Wissenschaftliche Mitarbeiter
Zeugnistext
Digital Signal Processing
Kompetenznachweis
Form |
sMP |
80% (mündliche Prüfung) |
Intervall: 2-3/Jahr
Lehrveranstaltungselemente
Vorlesung / Übung
Lernziele
Lerninhalte (Kenntnisse)
- Signals, Systems and Digital Signal Processing
- Basic Elements of DSP Systems
- Classification of Signals
- Continuous-Time and Discrete-Time Signals
- Deterministic and Random Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals
- Energy and Power of Signals
- Some Fundamental Signals
- Discrete-Time Linear Time-Invariant Systems
- Difference Equations
- Discrete-Time Convolution
- Unit-Pulse and Impulse Response
- Basic Systems Properties: Causality, Stability, Memory
- Ideal Sampling and Reconstruction
- Ideal Sampling and the Sampling Theorem
- Aliasing
- Fourier-Transform of Discrete-Time Signals
- Eigenfunctions of Discrete-Time LTI Systems
- Frequency response of Discrete-Time LTI Systems
- The Fourier-Transform of Discrete-Time Signals
- Ideal Continuous-Time Filters
- The z-Transform
- The Two-sided z-Transform
- Properties of the z-Transform
- The Inverse z-Transform
- Analysis of LTI Systems using the z-Transform
- Discrete Fourier-Transform
- Sampling the DTFT
- The DFT and the Inverse DFT
- The Fast Fourier Transform
- Linear Convolution Using the FFT
- Design of Digital Filters
- Design of FIR Filters
- Design of IIR Filters
- Random Signals
- Review of Probablity and Random Variables
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Advanced Sampling Techniques
- Quantization and Encoding
- Sampling of Bandpass Signals
- Sampling of Random Signals
- Sample Rate Conversion
- Sample Rate Reduction by an Integer Factor
- Sample Rate Increase by an Integer Factor
- Sample Rate Conversion by a Rational Factor
- Oversampling and Noise Shaping
- Optimum Linear Filters
- Linear Prediction
- The Wiener Filter
- Orthogonality Principle
- FIR Wiener Filter
- IIR Wiener Filter
- Spectrum Estimation
- The Periodogram
- Eigenanalysis Algorithms
- MUSIC Algorithm
- ESPRIT Algorithm
Fertigkeiten
- Students understand the fundamentals of discrete-time signals and systems
- Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation
- Analysis of discrete-time LTI Systems
- Students can calculate the output signal via convolution
- Students can determine the frequency response of a given system
- Students can characterize a given system in the frequency domain and in the z-domain
- Implementation of discrete-time LTI systems
- Students can implement the convolution sum in software
- Students can implement different structures for IIR systems in software
- Sudents can use the FFT to implement an FIR system
- Analyze effects of practical sampling
- Quantization noise
- Aliasing
- Trade-off pros and cons of advanced implementations like noise shaping
Begleitmaterial
- elektronische Vortragsfolien zur Vorlesung (lecture slides as pdf-file)
- elektronische Übungsaufgabensammlung (list of problems and solutions manual as pdf-files)
Besondere Voraussetzungen
Besondere Literatur
Besonderer Kompetenznachweis
Form |
bK |
2-3 eTests je 20min (je 1x wiederholbar) |
bÜA |
Präsenzübung und Selbstlernaufgaben |
Beitrag zum LV-Ergebnis |
bK |
20% |
bÜA |
unbenotet |
Intervall: 1/Jahr
Praktikum
Lernziele
Lerninhalte (Kenntnisse)
- Review of Probablity and Random Variables
- Moments, Averages and Distribution Functions
- Random Signals
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Sampling
- Sampling and coding for speech and/or audio signals
Fertigkeiten
- Analysis of random variables by means of
- Mean and moments
- Distribution
- Analysis of random signals
- Determine whether a given random signal is stationary or not
- Analyse whether a random signal contains discrete harmonic components
- by using the autocorrelation function
- by using the power spectral density
- Combatting noise
- Remove or suppress high-frequency noise from low-pass signals
- Abilty to trade-off different methods for digital coding of speech and audio signals
-
- Determine the quatization noise and the SNR for different sampling schemes
Begleitmaterial
- elektronische Beschreibung der Praktikums-Versuche (Instructions for lab experiments as pdf-files)
Besondere Voraussetzungen
Besondere Literatur
Besonderer Kompetenznachweis
Form |
bSZ |
Praktikum (Lab Experiments) |
Beitrag zum LV-Ergebnis |
bSZ |
Voraussetzung für Modulprüfung (prerequisite for final exam) |
Intervall: 1/Jahr