Grenzwerte und Stetigkeit: Zahlenfolgen, Konvergenz von Folgen, Geometrische Reihe, Grenzwerte bei Funktionen, Stetigkeit.
Differentialrechnung: Definition der Ableitung, Tangente, Ableitungen elementarer Funktionen, Ableitungsregeln, Monotonie, Höhere Ableitungen, Taylorpolynom, Elemente der Kurvendiskussion, Regel von de l’Hospital. Optional: Taylorreihen und Potenzreihen
Vektorräume und analytische Geometrie: Gruppen, Körper, Restklassenkörper, Vektorräume über Körpern, Elementare Vektorrechnung, Ortsvektoren und freie Vektoren, Skalarprodukt, Norm, Winkel, Vektorprodukt, Geraden, Ebenen, analytische Geometrie.
Lineare Gleichungssysteme: Matrizen über Körpern, Matrizenrechnung, Lineare Gleichungssysteme und ihre Lösungsmenge, Gaußscher Algorithmus, inverse Matrix.
Fertigkeiten
Die Studierenden beherrschen die mathematischen Grundbegriffe und können insbesondere mit Mengen, Funktionen, Termen und Gleichungen umgehen.
Sie können die Eigenschaften und die Graphen der wichtigsten reellen Funktionen bestimmen.
Sie können Grenzwerte für Folgen und Funktionen berechnen und Funktionen auf Stetigkeit untersuchen.
Sie kennen die Definition der Ableitung und ihre anschauliche Bedeutung, beherrschen die Anwendung der verschiedenen Ableitungsregeln und können Tangenten und Taylorpolynome bestimmen.
Die Studierenden können mit Vektoren im n-dimensionalen Standardvektorraum über Körpern rechnen. Sie können Längen und Winkel in reellen Vektorräumen bestimmen, Geraden und Ebenen beschreiben und die Aufgaben der analytischen Geometrie lösen.
Sie kennen Matrizen über Körpern und beherrschen die Rechenverfahren. Sie können die Lösungsmenge von linearen Gleichungssystemen mit dem Gaußschen Eliminationsverfahren bestimmen.
Begleitmaterial
Skript zur Vorlesung (gedruckt und online)
Übungsaufgaben (gedruckt und online)
Quizaufgaben online über Lernportal moodle.fh-koeln.de