Modulhandbuch MaCSN2012_Digital Signal Processing 
Verantwortlich: Prof. Dr.-Ing. Harald Elders-Boll
  Modul 
  Organisation 
  
    
      | 
          | Bezeichnung | 
            | Lang | MaCSN2012_Digital Signal Processing |  
            | MID | MaCSN2012_DSP |  
            | MPID |  |  |  | 
          | Zuordnung | 
            | Studiengang | MaCSN2012 |  
            | Studienrichtung | G |  
            | Wissensgebiete | G_VMINT |  |  | 
          | Einordnung ins Curriculum | 
            | Fachsemester | 1-2 |  
            | Pflicht | G |  
            | Wahl |  |  |  | 
          | Version | 
            | erstellt | 2012-01-05 |  
            | VID | 1 |  
            | gültig ab | WS 2012/13 |  
            | gültig bis |  |  | 
  
  Zeugnistext 
  de 
Grundlagen zeitdiskreter Signale und Systeme, Fourier-Analyse, digitale Signalverarbeitung und Anwendungen
  en 
Fundamentals of discrete-time signals and systems, Fourier analysis and modern digital processing and its applications 
  Unterrichtssprache 
Deutsch oder Englisch
  Modulprüfung 
  
    | Form der Modulprüfung | 
      | sMP | 80% (mündliche Prüfung) | 
  
  
    | Beiträge ECTS-CP aus Wissensgebieten | 
      | G_VMINT | 5 | 
    
      | Summe | 5 | 
  
Aufwand [h]: 150
  anerkennbare LV  
  
  Prüfungselemente 
  Vorlesung / Übung 
  
    | Form Kompetenznachweis | 
      | bK | 2-3 eTests je 20min (je 1x wiederholbar) | 
    
      | bÜA | Präsenzübung und Selbstlernaufgaben | 
  
  
    | Beitrag zum Modulergebnis | 
      | bK | 20% | 
    
      | bÜA | unbenotet | 
  
  Spezifische Lernziele  
  Kenntnisse 
 
-  Signals, Systems and Digital Signal Processing (PFK.5, PFK.6, PFK.8)
-  Discrete-Time Linear Time-Invariant Systems  
-  Difference Equations (PFK.5, PFK.6) 
-  Discrete-Time Convolution (PFK.5, PFK.6) 
-  Unit-Pulse and Impulse Response (PFK.5, PFK.6) 
-  Basic Systems Properties: Causality, Stability, Memory (PFK.5, PFK.6) 
 
-  Ideal Sampling and Reconstruction 
-  Ideal Sampling and the Sampling Theorem  (PFK.6, PFK.8)
-  Aliasing  (PFK.6, PFK.8)
 
-  Fourier-Transform of Discrete-Time Signals (PFK.6, PFK.7) 
-  Frequency response of Discrete-Time LTI Systems
-  The Fourier-Transform of Discrete-Time Signals
 
-  The z-Transform (PFK.6, PFK.7) 
-  The Two-sided z-Transform
-  Properties of the z-Transform
-  The Inverse z-Transform
-  Analysis of LTI Systems using the z-Transform
 
-  Discrete Fourier-Transform (PFK.6, PFK.7) 
-  The DFT and the Inverse DFT
-  The Fast Fourier Transform
 
-  Design of Digital Filters (PFK.6, PFK.8) 
-  Design of FIR Filters
-  Design of IIR Filters
 
-  Random Signals (PFK.5, PFK.6, PFK.7) 
-  Ensemble Averages
-  Correlation Functions
-  Stationary and Ergodic Processes
-  Power Spectral Density
-  Transmission of Random Signals over LTI Systems
 
-  Advanced Sampling Techniques (PFK.6, PFK.7) 
-  Quantization and Encoding
-  Sampling of Random Signals
-  Sample Rate Conversion
-  Oversampling and Noise Shaping
 
-  Optimum Linear Filters (PFK.6, PFK.8) 
-  Linear Prediction
-  The Wiener Filter
-  Adaptive Filters
 
-  Spectrum Estimation (PFK.6, PFK.7) 
-  The Periodogram
-  Eigenanalysis Algorithms
 
  Fertigkeiten 
 
-  Students understand the fundamentals of discrete-time signals and systems (PFK.6)
-  Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation (PFK.6, PFK.7)
-  Analysis of discrete-time LTI Systems (PFK.6, PFK.7) 
-  Students can calculate the output signal via convolution
-  Students can determine the frequency response of a given system
-  Students can characterize a given system in the frequency domain and in the z-domain
 
-  Implementation of discrete-time LTI systems (PFK.1, PFK.2, PFK.6, PFK.8) 
-  Students can implement the convolution sum in software
-  Students can implement different structures for IIR systems in software
-  Sudents can use the FFT to implement an FIR system
 
-  Analyze effects of practical sampling (PFK.6, PFK.7) 
-  Quantization noise
-  Aliasing
-  Trade-off pros and cons of advanced implementations like noise shaping
 
  Exemplarische inhaltliche Operationalisierung  
The follwowing subjects can be presented quickly assuming students have had prior exposure to discrete-time systems: Signals, Systems and Digital Signal Processing Discrete-Time Linear Time-Invariant Systems Ideal Sampling and Reconstruction Fourier-Transform of Discrete-Time Signals The z-TransformThe follwoing subjects should be presented in depth: Discrete Fourier-Transform Design of Digital Filters Random Signals Advanced Sampling TechniquesThe course should be complemented with selected topics from the following advanced subjects: Optimum Linear Filters Spectrum Estimation Adaptive FiltersThe theory should be illustrated and put into practise by MATLAB  code of the presented methods and algorithms
  Praktikum 
  
    | Form Kompetenznachweis | 
      | bSZ | Praktikum (Lab Experiments) | 
  
  
    | Beitrag zum Modulergebnis | 
      | bSZ | Voraussetzung für Modulprüfung (prerequisite for final exam) | 
  
  Spezifische Lernziele  
  Lerninhalte 
 
-  Random Signals (PFK.5, PFK.6, PFK.7) 
-  Ensemble Averages
-  Correlation Functions
-  Stationary and Ergodic Processes
-  Power Spectral Density
-  Transmission of Random Signals over LTI Systems
 
-  Sampling (PFK.6, PFK.7) 
-  Sampling and coding for speech and/or audio signals
 
  Fertigkeiten 
 
-  Analysis of random signals (PFK.6, PFK.7, PFK.7, PFK.9) 
-  Determine whether a given random signal is stationary or not
-  Analyse whether a random signal contains discrete harmonic components 
-  by using the autocorrelation function
-  by using the power spectral density
 
 
-  Combatting noise 
-  Remove or suppress high-frequency noise from low-pass signals  (PFK.1, PFK.6, PFK.8)
 
-  Abilty to trade-off and implement different methods for digital coding of speech and audio signals (PFK.1, PFK.6, PFK.8)
-  Determine the quatization noise and the SNR for different sampling schemes (PFK.2, PFK.5, PFK.6, PFK.7)
  Exemplarische inhaltliche Operationalisierung