Modulhandbuch MaTIN2012_Digital Signal Processing
Verantwortlich: Prof. Dr.-Ing. Harald Elders-Boll
Modul
Organisation
Bezeichnung |
Lang |
MaTIN2012_Digital Signal Processing |
MID |
MaTIN2012_DSP |
MPID |
|
|
|
Zuordnung |
Studiengang |
MaTIN2012 |
Studienrichtung |
G |
Wissensgebiete |
SPK, SPP |
|
|
Einordnung ins Curriculum |
Fachsemester |
1-2 |
Wahl |
WPK, WPP |
|
|
Version |
erstellt |
2012-01-05 |
VID |
1 |
gültig ab |
WS 2012/13 |
gültig bis |
|
|
Zeugnistext
de
Digital Signal Processing
en
Digital Signal Processing
Unterrichtssprache
Deutsch oder Englisch
Modulprüfung
Form der Modulprüfung |
sMP |
80% (mündliche Prüfung) |
Beiträge ECTS-CP aus Wissensgebieten |
SPK, SPP |
5 |
Summe |
5 |
Aufwand [h]: 150
anerkennbare LV
Prüfungselemente
Vorlesung / Übung
Form Kompetenznachweis |
bK |
2-3 eTests je 20min (je 1x wiederholbar) |
bÜA |
Präsenzübung und Selbstlernaufgaben |
Beitrag zum Modulergebnis |
bK |
20% |
bÜA |
unbenotet |
Spezifische Lernziele
Kenntnisse
- Signals, Systems and Digital Signal Processing (PFK.2, PFK.3, PFK.4)
- Discrete-Time Linear Time-Invariant Systems (PFK.2, PFK.4)
- Difference Equations
- Discrete-Time Convolution
- Unit-Pulse and Impulse Response
- Basic Systems Properties: Causality, Stability, Memory
- Ideal Sampling and Reconstruction (PFK.2, PFK.4)
- Ideal Sampling and the Sampling Theorem
- Aliasing
- Fourier-Transform of Discrete-Time Signals (PFK.2, PFK.4)
- Frequency response of Discrete-Time LTI Systems
- The Fourier-Transform of Discrete-Time Signals
- The z-Transform (PFK.2, PFK.4)
- The Two-sided z-Transform
- Properties of the z-Transform
- The Inverse z-Transform
- Analysis of LTI Systems using the z-Transform
- Discrete Fourier-Transform (PFK.2, PFK.4)
- The DFT and the Inverse DFT
- The Fast Fourier Transform
- Design of Digital Filters (PFK.2, PFK.5)
- Design of FIR Filters
- Design of IIR Filters
- Random Signals (PFK.2, PFK.4)
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Advanced Sampling Techniques (PFK.2, PFK.4, PFK.3)
- Quantization and Encoding
- Sampling of Random Signals
- Sample Rate Conversion
- Oversampling and Noise Shaping
- Optimum Linear Filters (PFK.2, PFK.4)
- Linear Prediction
- The Wiener Filter
- Adaptive Filters
- Spectrum Estimation (PFK.2, PFK.4)
- The Periodogram
- Eigenanalysis Algorithms
Fertigkeiten
- Students understand the fundamentals of discrete-time signals and systems (PFK.2)
- Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation (PFK.2, PFK.4)
- Analysis of discrete-time LTI Systems (PFK.2, PFK.4)
- Students can calculate the output signal via convolution
- Students can determine the frequency response of a given system
- Students can characterize a given system in the frequency domain and in the z-domain
- Implementation of discrete-time LTI systems (PFK.2, PFK.4, PFK.5, PFK.6)
- Students can implement the convolution sum in software
- Students can implement different structures for IIR systems in software
- Sudents can use the FFT to implement an FIR system
- Analyze effects of practical sampling (PFK.3, PFK.4)
- Quantization noise
- Aliasing
- Trade-off pros and cons of advanced implementations like noise shaping
Exemplarische inhaltliche Operationalisierung
The follwowing subjects can be presented quickly assuming students have had prior exposure to discrete-time systems: Signals, Systems and Digital Signal Processing Discrete-Time Linear Time-Invariant Systems Ideal Sampling and Reconstruction Fourier-Transform of Discrete-Time Signals The z-TransformThe follwoing subjects should be presented in depth: Discrete Fourier-TransformDesign of Digital FiltersRandom SignalsAdvanced Sampling TechniquesThe course should be complemented with selected topics from the following advanced subjects: Optimum Linear Filters Spectrum Estimation Adaptive FiltersThe theory should be illustrated and put into practise by MATLAB code of the presented methods and algorithms
Praktikum
Form Kompetenznachweis |
bSZ |
Praktikum (Lab Experiments) |
Beitrag zum Modulergebnis |
bSZ |
Voraussetzung für Modulprüfung (prerequisite for final exam) |
Spezifische Lernziele
Lerninhalte
- Random Signals (PFK.2, PFK.4, PFK.5)
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Sampling (PFK.2, PFK.4)
- Sampling and coding for speech and/or audio signals
Fertigkeiten
- Analysis of random signals (PFK.2, PFK.4, PFK.5, PFK.6)
- Determine whether a given random signal is stationary or not
- Analyse whether a random signal contains discrete harmonic components
- by using the autocorrelation function
- by using the power spectral density
- Combatting noise (PFK.2, PFK.4, PSK.3)
- Remove or suppress high-frequency noise from low-pass signals
- Abilty to trade-off and implement different methods for digital coding of speech and audio signals (PFK.2, PFK.3, PFK.4, PFK.6, PSK.3)
- Determine the quatization noise and the SNR for different sampling schemes (PFK.2, PFK.4)
Exemplarische inhaltliche Operationalisierung

Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden