Modulhandbuch MaTIN2012_Digital_Signal_Processing
Verantwortlich: Prof. Dr.-Ing. Harald Elders-Boll
Modul
Anerkennbare Lehrveranstaltung (LV)
Organisation
Bezeichnung |
Lang |
MaTIN2012_Digital_Signal_Processing |
MID |
MaTIN2012_DSP |
MPID |
|
|
|
Zuordnung |
Studiengang |
MaTIN2012 |
Studienrichtung |
G |
Wissensgebiete |
SPK, SPP |
|
|
Einordnung ins Curriculum |
Fachsemester |
1-2 |
Pflicht |
|
Wahl |
G |
|
|
Version |
erstellt |
2012-01-05 |
VID |
1 |
gültig ab |
WS 2012/13 |
gültig bis |
|
|
Zeugnistext
de
Digital Signal Processing
en
Digital Signal Processing
Unterrichtssprache
Deutsch oder Englisch
Modulprüfung
Form der Modulprüfung |
sMP |
80% (mündliche Prüfung) |
Beiträge ECTS-CP aus Wissensgebieten |
SPK, SPP |
5 |
Summe |
5 |
Aufwand [h]: 150
Prüfungselemente
Vorlesung / Übung
Form Kompetenznachweis |
bK |
2-3 eTests je 20min (je 1x wiederholbar) |
bÜA |
Präsenzübung und Selbstlernaufgaben |
Beitrag zum Modulergebnis |
bK |
20% |
bÜA |
unbenotet |
Spezifische Lernziele
Kenntnisse
- Signals, Systems and Digital Signal Processing (PFK.2, PFK.3, PFK.4)
- Discrete-Time Linear Time-Invariant Systems (PFK.2, PFK.4)
- Difference Equations
- Discrete-Time Convolution
- Unit-Pulse and Impulse Response
- Basic Systems Properties: Causality, Stability, Memory
- Ideal Sampling and Reconstruction (PFK.2, PFK.4)
- Ideal Sampling and the Sampling Theorem
- Aliasing
- Fourier-Transform of Discrete-Time Signals (PFK.2, PFK.4)
- Frequency response of Discrete-Time LTI Systems
- The Fourier-Transform of Discrete-Time Signals
- The z-Transform (PFK.2, PFK.4)
- The Two-sided z-Transform
- Properties of the z-Transform
- The Inverse z-Transform
- Analysis of LTI Systems using the z-Transform
- Discrete Fourier-Transform (PFK.2, PFK.4)
- The DFT and the Inverse DFT
- The Fast Fourier Transform
- Design of Digital Filters (PFK.2, PFK.5)
- Design of FIR Filters
- Design of IIR Filters
- Random Signals (PFK.2, PFK.4)
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Advanced Sampling Techniques (PFK.2, PFK.4, PFK.3)
- Quantization and Encoding
- Sampling of Random Signals
- Sample Rate Conversion
- Oversampling and Noise Shaping
- Optimum Linear Filters (PFK.2, PFK.4)
- Linear Prediction
- The Wiener Filter
- Adaptive Filters
- Spectrum Estimation (PFK.2, PFK.4)
- The Periodogram
- Eigenanalysis Algorithms
Fertigkeiten
- Students understand the fundamentals of discrete-time signals and systems (PFK.2)
- Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation (PFK.2, PFK.4)
- Analysis of discrete-time LTI Systems (PFK.2, PFK.4)
- Students can calculate the output signal via convolution
- Students can determine the frequency response of a given system
- Students can characterize a given system in the frequency domain and in the z-domain
- Implementation of discrete-time LTI systems (PFK.2, PFK.4, PFK.5, PFK.6)
- Students can implement the convolution sum in software
- Students can implement different structures for IIR systems in software
- Sudents can use the FFT to implement an FIR system
- Analyze effects of practical sampling (PFK.3, PFK.4)
- Quantization noise
- Aliasing
- Trade-off pros and cons of advanced implementations like noise shaping
Exemplarische inhaltliche Operationalisierung
The following subjects can be presented quickly assuming students have had prior exposure to discrete-time systems:
- Signals, Systems and Digital Signal Processing
- Discrete-Time Linear Time-Invariant Systems
- Ideal Sampling and Reconstruction
- Fourier-Transform of Discrete-Time Signals
- The z-Transform
The follwoing subjects should be presented in depth:
- Discrete Fourier-Transform
Design of Digital Filters
Random Signals
Advanced Sampling Techniques
The course should be complemented with selected topics from the following advanced subjects:
- Optimum Linear Filters
- Spectrum Estimation
- Adaptive Filters
The theory should be illustrated and put into practise by MATLAB code of the presented methods and algorithms
Praktikum
Form Kompetenznachweis |
bSZ |
Praktikum (Lab Experiments) |
Beitrag zum Modulergebnis |
bSZ |
Voraussetzung für Modulprüfung (prerequisite for final exam) |
Spezifische Lernziele
Lerninhalte
- Random Signals (PFK.2, PFK.4, PFK.5)
- Ensemble Averages
- Correlation Functions
- Stationary and Ergodic Processes
- Power Spectral Density
- Transmission of Random Signals over LTI Systems
- Sampling (PFK.2, PFK.4)
- Sampling and coding for speech and/or audio signals
Fertigkeiten
- Analysis of random signals (PFK.2, PFK.4, PFK.5, PFK.6)
- Determine whether a given random signal is stationary or not
- Analyse whether a random signal contains discrete harmonic components
- by using the autocorrelation function
- by using the power spectral density
- Combatting noise (PFK.2, PFK.4, PSK.3)
- Remove or suppress high-frequency noise from low-pass signals
- Abilty to trade-off and implement different methods for digital coding of speech and audio signals (PFK.2, PFK.3, PFK.4, PFK.6, PSK.3)
- Determine the quatization noise and the SNR for different sampling schemes (PFK.2, PFK.4)
Exemplarische inhaltliche Operationalisierung
The follwowing subjects can be presented quickly assuming students have had prior exposure to discrete-time systems:
- Signals, Systems and Digital Signal Processing
- Discrete-Time Linear Time-Invariant Systems
- Ideal Sampling and Reconstruction
- Fourier-Transform of Discrete-Time Signals
- The z-Transform
The follwoing subjects should be presented in depth:
- Discrete Fourier-Transform
Design of Digital Filters
Random Signals
Advanced Sampling Techniques
The course should be complemented with selected topics from the following advanced subjects:
- Optimum Linear Filters
- Spectrum Estimation
- Adaptive Filters
The theory should be illustrated and put into practise by MATLAB code of the presented methods and algorithms
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden