Course Mathematics 1 Kunz


Responsible: Prof. Dr. Dietmar Kunz

Course

Meets requirements of following modules(MID)

Course Organization

Version
created 2011-11-09
VID 1
valid from WS 2012/13
valid to
Course identifiers
Long name Mathematics 1 Kunz
CID F07_MA1_Kunz
CEID (exam identifier)

Contact hours per week (SWS)
Lecture 5
Exercise (unsplit)
Exercise (split) 2
Lab
Project
Seminar
Tutorial(voluntary) 2
Total contact hours
Lecture 75
Exercise (unsplit)
Exercise (split) 30
Lab
Project
Seminar
Tutorial (voluntary) 30
Max. capacity
Exercise (unsplit)
Exercise (split) 40
Lab
Project
Seminar

Total effort (hours): 300

Instruction language

  • German

Study Level

  • undergraduate

Prerequisites

  • tangible school knowledge

Textbooks, Recommended Reading

  • Fetzer/Frankel: Mathematik
  • Papula: Mathematik

Instructors

  • Prof. Dr. Dietmar Kunz
  • Prof. Dr. Stefan Grünvogel

Supporting Scientific Staff

  • tba

Transcipt Entry

Mathematics 1

Assessment

Type
wE if directly following course: 30% midterm exam, 70% concluding written exam
wE if not directly following course: 100%

Total effort [hours]
wE 10

Frequency: 2/year


Course components

Lecture/Exercise

Objectives

Contents
  • basics
    • statements
    • sets
    • natural numbers
      • factorial
      • binomial theorem
      • mathematical induction
    • real numbers
      • modulus
      • (in)equalities
    • functions
      • monotonous
      • bounded
      • symmetry
      • linear adaption of axes
  • elementary functions
    • algebraic functions
      • division of polynomials
      • Horner's method
      • partial fraction decomposition
    • transcendental functions
      • trigonometric functions
      • exp and log
  • geometry
    • coordinate systems
  • analysis
    • convergence, divergence
      • sequences
      • functions
      • continuity
  • complex numbers
  • linear algebra
    • vectors
      • linear (in)dependence
      • scalar product
        • angle between vectors
        • norm
        • orthogonal decomposition
      • cross product
        • iterated cross products
        • angle between planes
      • spherical angle, spherical triangles
    • matrices
      • linear equation systems
      • Gaussian elimination
      • inversion
      • determinants
      • orthogonal matrices
      • homogeneous coordinates
      • eigenvalues, -vectors

Acquired Skills
  • solve exercises concerning
    • basics
      • statements
      • sets
      • natural numbers
        • factorial
        • binomial theorem
        • mathematical induction
      • real numbers
        • modulus
        • (in)equalities
      • functions
        • monotonous
        • bounded
        • symmetry
        • linear adaption of axes
    • elementary functions
      • algebraic functions
        • division of polynomials
        • Horner's method
        • partial fraction decomposition
      • transcendental functions
        • trigonometric functions
        • exp and log
    • geometry
      • coordinate systems
    • analysis
      • convergence, divergence
        • sequences
        • functions
        • continuity
    • complex numbers
    • linear algebra
      • vectors
        • linear (in)dependence
        • scalar product
          • angle between vectors
          • norm
          • orthogonal decomposition
        • cross product
          • iterated cross products
          • angle between planes
        • spherical angle, spherical triangles
      • matrices
        • linear equation systems
        • Gaussian elimination
        • inversion
        • determinants
        • orthogonal matrices
        • homogeneous coordinates
        • eigenvalues, -vectors

Operational Competences
  • solve application-related problems

Additional Component Assessment

Type
wE written midterm exam about 8 weeks after start
fPS exrcises during lecture and as home work

Contribution to course grade
wE 30% of the points of concluding assesssment
fPS prerequisite to course exam

Frequency: 1/year

Topic-Revision: r3 - 11 Jan 2016, GeneratedContent
 
Diese Seite läuft auf FoswikiDas Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden