Course Deep Learning Architectures


Responsible: Prof. Dr. Beate Rhein

Course

Meets requirements of following modules(MID)

Course Organization

Version
created 2013-06-06
VID 1
valid from WS 2012/13
valid to
Course identifiers
Long name Deep Learning Architectures
CID F07_DLA
CEID (exam identifier)

Contact hours per week (SWS)
Lecture 2
Exercise (unsplit) 2
Exercise (split)
Lab 1
Project
Seminar
Tutorial(voluntary)
Total contact hours
Lecture 30
Exercise (unsplit) 30
Exercise (split)
Lab 15
Project
Seminar
Tutorial (voluntary)
Max. capacity
Exercise (unsplit)
Exercise (split)
Lab 18
Project
Seminar

Total effort (hours): 180

Instruction language

  • German
  • English

Study Level

  • Master

Prerequisites

  • basic skills in neural networks
  • strong programming skills (Python)

Textbooks, Recommended Reading

  • I. Sommerville: Software Engineering (Addison-Wesley / Pearson Studium)
  • H. Balzert et.al.: Lehrbuch der Softwaretechnik (Spektrum Akademischer Verlag)
    • Basiskonzepte und Req.Eng.
    • Softwaremanagement
  • G.E. Thaller: Software- und Systementwicklung (Heise Verlag)
  • Bernd Oestereich: Analyse und Design mit UML 2.3 (Oldenbourg)
  • Gamma et.al.: Design Patterns, (Addison-Wesley)
  • OMG Unified Modeling Language Spec., www.omg.org/uml
  • K. Beck: eXtreme Programming (Addison-Wesley Professional)
  • Ken Schwaber: Agiles Projektmanagement mit Scrum (Microsoft Press)
  • H.D. Litke: Projektmanagement (Hanser)

Instructors

  • MSc Jan Bollenbacher

Supporting Scientific Staff

  • MSc Jan Bollenbacher

Transcipt Entry

Deep Learning Architectures

Assessment

Type
oE normal case (except on large numbers of assessments: wE

Total effort [hours]
oE 10

Frequency: 2-3/year


Course components

Lecture/Exercise

Objectives

Lerninhalte (Kenntnisse)
  • Introduction Machine Learning
  • Tooling
    • Handling Machine Learing Frameworks
    • Parallel Computing using GPUs
  • Types of Neuronal Networks and application
    • Feedforward Neuronal Networks and Backpropagation
    • Convolutional Networks
    • Recurrent Networks
  • Deep Reinforcement Learning
    • Introduction Reinforcement Learning
    • Policy-Gradient Methods
    • Actor-Critic Methods

Fertigkeiten (PFK 2)
  • Knowing the mathematic principles of Algorithms
  • Using Maschine Learning Frameworks
  • Applying Algorithms on problems
    • time series
    • image classification
    • complex environments (Games)

Kompetenzen (PFK 3)
  • Classification of problems and identification of feasible solutions
  • Evaluation of algorithms
  • Independently gaining knowledge in complex field

Additional Component Assessment

Lab

Objectives

Fertigkeiten (PFK 4, PFK 5, PFK 6)
  • Transfering knowledge from course on new problems
  • Implementing algorithms on new problems
  • Scientific Working and experiments
  • Interpretation of results

Handlungskompetenz demonstrieren (PFK 7, PSK 1, PSK 3)
  • Outline the results in a short paper
  • Research in complex field
  • Rate paper by relevance
  • Rating the experiment results
  • Rating the used algorithms

Additional Component Assessment

  • Präsentation der Ergebnisse des Praktikums
  • Beitrag zum LV-Ergebnis
  • Intervall
    • 1/Jahr

Topic-Revision: r2 - 26 Feb 2019, GeneratedContent
 
Diese Seite läuft auf FoswikiDas Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden