Hello
WikiGuest
Einloggen
oder
Registrieren
Users
Studium
Lehrveranstaltungen
Sie sind hier:
Foswiki
>
F07_Studium Web
>
F07_DLA_en
(26 Feb 2019,
GeneratedContent
)
Course Deep Learning Architectures
Course
Meets requirements of following modules(MID)
Course Organization
Assessment
Course components
Lecture/Exercise
Lab
Responsible:
Prof. Dr. Beate Rhein
Course
Meets requirements of following modules(MID)
in active programs
Ma TIN2012 DLA
Course Organization
Version
created
2013-06-06
VID
1
valid from
WS 2012/13
valid to
Course identifiers
Long name
Deep Learning Architectures
CID
F07_DLA
CEID (exam identifier)
Contact hours per week (SWS)
Lecture
2
Exercise (unsplit)
2
Exercise (split)
Lab
1
Project
Seminar
Tutorial(voluntary)
Total contact hours
Lecture
30
Exercise (unsplit)
30
Exercise (split)
Lab
15
Project
Seminar
Tutorial (voluntary)
Max. capacity
Exercise (unsplit)
Exercise (split)
Lab
18
Project
Seminar
Total effort (hours):
180
Instruction language
German
English
Study Level
Master
Prerequisites
basic skills in neural networks
strong programming skills (Python)
Textbooks, Recommended Reading
I. Sommerville: Software Engineering (Addison-Wesley / Pearson Studium)
H. Balzert et.al.: Lehrbuch der Softwaretechnik (Spektrum Akademischer Verlag)
Basiskonzepte und Req.Eng.
Softwaremanagement
G.E. Thaller: Software- und Systementwicklung (Heise Verlag)
Bernd Oestereich: Analyse und Design mit UML 2.3 (Oldenbourg)
Gamma et.al.: Design Patterns, (Addison-Wesley)
OMG Unified Modeling Language Spec., www.omg.org/uml
K. Beck: eXtreme Programming (Addison-Wesley Professional)
Ken Schwaber: Agiles Projektmanagement mit Scrum (Microsoft Press)
H.D. Litke: Projektmanagement (Hanser)
Instructors
MSc Jan Bollenbacher
Supporting Scientific Staff
MSc Jan Bollenbacher
Transcipt Entry
Deep Learning Architectures
Assessment
Type
oE
normal case (except on large numbers of assessments: wE
Total effort [hours]
oE
10
Frequency:
2-3/year
Course components
Lecture/Exercise
Objectives
Lerninhalte (Kenntnisse)
Introduction Machine Learning
Tooling
Handling Machine Learing Frameworks
Parallel Computing using GPUs
Types of Neuronal Networks and application
Feedforward Neuronal Networks and Backpropagation
Convolutional Networks
Recurrent Networks
Deep Reinforcement Learning
Introduction Reinforcement Learning
Policy-Gradient Methods
Actor-Critic Methods
Fertigkeiten (PFK 2)
Knowing the mathematic principles of Algorithms
Using Maschine Learning Frameworks
Applying Algorithms on problems
time series
image classification
complex environments (Games)
Kompetenzen (PFK 3)
Classification of problems and identification of feasible solutions
Evaluation of algorithms
Independently gaining knowledge in complex field
Additional Component Assessment
Lab
Objectives
Fertigkeiten (PFK 4, PFK 5, PFK 6)
Transfering knowledge from course on new problems
Implementing algorithms on new problems
Scientific Working and experiments
Interpretation of results
Handlungskompetenz demonstrieren (PFK 7, PSK 1, PSK 3)
Outline the results in a short paper
Research in complex field
Rate paper by relevance
Rating the experiment results
Rating the used algorithms
Additional Component Assessment
Präsentation der Ergebnisse des Praktikums
Beitrag zum LV-Ergebnis
Intervall
1/Jahr
E
ditieren
|
A
nhang
|
Druckversion (
p
)
|
H
istorie
: r2
<
r1
|
Querverweise (
b
)
|
Quelltext (
v
)
|
Editieren
w
ikitext
|
M
ehr Topic-Aktionen
Topic-Revision: r2 - 26 Feb 2019,
GeneratedContent
F07_Studium
Einloggen
oder
Registrieren
Werkzeugkasten
Neues Topic anlegen
Index
Suchen
Änderungen
Benachrichtigungen
RSS-Feed
Statistiken
Einstellungen
Webs
F07_Studium
System
Deutsch
English
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden